
A Critique of OpenMath and Thoughts on

Encoding Mathematics, January, 2001

Richard Fateman
Computer Science Division

University of California, Berkeley

January 17, 2001

Abstract

The OpenMath project, as portrayed in the Special Issue of the SIGSAM
Bulletin (volume 34 no. 2), seems to have a number of problems to face.
One of them is the (apparently implicit) assumption that the OpenMath
designers, through dint of mathematical thought and the advice of the
members of the Open Math Society, have solved, in their domain, one of
the most pressing problems of software engineering today, namely soft-
ware re-use. After six years there is insufficient evidence on which to base
any claims of success and it appears that most substantive practical is-
sues of mathematical representation and communication have yet to be
addressed. We also raise questions about related computational mathe-
matical goals and mathematical encodings.

1 Introduction

I am grateful to the SIGSAM Bulletin and its guest editor Mike Dewar for
putting together the Special Issue on OpenMath (volume 34 number 2). Among
these papers we find responsible authors who have been able to lay out clearly
the objectives, perspectives, expectations, and methods in OpenMath and its
implementations to date.

2 Good and Bad Science

I am reminded of the genre of mathematics and theoretical computer science
publications in which an ambitious author publishes a grand suite of definitions
and notations, intending to lay the foundation for a significant field. Sometimes
such a publication indeed presages the advent of significant studies. At least as
often such a publication has no impact whatsoever because the paper acciden-
tally or perhaps studiously avoids addressing certain assumptions essential to
the possible application of the studies. These assumptions, being palpably false

1



in all contexts, means that any possible results of the investigations in the field
are totally disconnected from any possible relationship with other mathematics
or applications.

This is not a fatal defect in the world of mathematics publications, and in-
deed there are a number of journals that are devoted to their own brand of
esoteric disconnected studies. On the other hand, such studies that are in-
tended to – but fail to – reflect upon such mundane concerns as physical reality
or machine computation are generally wastes of paper and time. A typical
and traditional defect in computation papers used to be the assumption that
arithmetic operations can be done in constant time on numbers of unbounded
length. This is less frequent today. A very common defect, even today, is the
assumption that all computations of interest are “asymptotically large”.

One defect in the OpenMath concept is the implicit assumption that inde-
pendently developed software is easily re-usable. In the real world it is generally
believed that software re-use is a major unsolved problem in software engineer-
ing. There are substantial additional costs in software production if one hopes
to re-use the software; even then it is not assured that this potential of re-use
can be exploited in practice. One might hope that “mathematical” software
would be more easily re-usable because of some common algebraic and logical
underpinings. While the scientific subroutine libraries sold by NAG and other
vendors is proof that re-usable programs can be written, it is also proof of how
difficult and expensive it is, as well as challenging to present to users1.

Except for trivial matters, there seems to be rather little evidence to support
the hope that far more complex systems not written specifically for re-use such
as commercial computer algebra programs, can be made to intercommunicate
by interposing additional layers.

Viewed from the perspective of the SIGSAM Bulletin, the problem with
OpenMath as it stands today is that it only addresses selected and in my view
overly-simplistic internalized needs of a very few particular programs, and yet to
do so, it erects a complex design of technology and politics. All protestations to
the contrary, it simply does not have any mandate outside the rather simple ap-
plication of denoting what could be trivially done in any programming language
capable of representing attributed trees. Languages that come to mind immedi-
ately include Java, C, C++, Lisp. But almost any contemporary language will
do.

3 Logic, Language, and Mathematics

There is another, far more expansive view of the OpenMath project, which is
that it is the key step in representing all of mathematics constructively using
now-traditional tools of logic and language. That is it is the basis for a cooper-
ative society in which all of mathematics will be encoded through extension of

1There are some 14 NAG routines (Mark 19) for one-dimensional definite integration, and
a person using one of them needs to understand some eight parameters

2



some core definitions2. Henk Barendregt and Arjeh Cohen couch the problem in
terms of communication between computer algebra systems and proof assistants
in their (ISSAC-2000) address “Electronic Communication in Mathematics.”

It is a recurring theme (perhaps a dream!) of mathematicians that given
enough time and thought, one can represent all of mathematics formally and
computably, starting from a small set of primitives by using simple computations
and proof methods. While I applaud the occasional successes in these ventures,
the result have been unimpressive even from the range of computations routinely
performed by computer algebra systems. They certainly represent a small scope
compared to the kinds of mathematics human researchers deal with informally
on computers. (Consider all the advanced mathematics routinely typeset by
use of the program TEX.) My view is that much of today’s applicable mathe-
matics, including that in ordinary texts and journals, is simply too informal to
be handled by the logical and algebraic means typically proposed by the con-
structivists. Indeed, much of mathematical discourse goes beyond informality
to be (unintentionally) ambiguous on its face. The ambiguity can generally be
resolved by a sufficiently contextual interpretation, often requiring a reader to
be skilled in the mathematical subdiscipline – not merely the notation – being
represented.

Regardless of the good intentions of groups of mathematicians, the gap
will remain for the foreseeable future. Each new group attempting to build
a constructive mathematical edifice appears to start from ground zero, pro-
ceeds for a short distance, and either fades or retrenches. Almost any am-
bitious computer algebra system that must eventually meet performance ex-
pectations seems to abandon proofs or (complete) formal rigor, and so we
have numerous examples of retrenchment. An example of a project retain-
ing formality and that consequently has reached some stasis is the QED Project
ftp://ftp.mcs.anl.gov/pub/qed/manifesto). There are collections of such
efforts now on the internet. My favorite collection in this area is the eclec-
tic utopianism of Robert Jones (www.rbjones.com). I sympathize with well-
meaning mathematics researchers who continue to hope that computers will
provide both the applications (correctness of computer programs) and the tools
(software) to justify their optimism that logic will triumph3. Unfortunately logic
works poorly with informality4. Beyond informality and the ambiguity present
in our mathematics, the inadequacies of formal logical systems (and Gödel’s
incompleteness theorem) contribute to our skepticism of building a system from
simple logic.

This is perhaps a distraction from some uses of OpenMath. If it is merely
going to be a communication mechanism, can we avoid the tar pits expressed

2How large should the core be? If all details are left to the unwritten extensions of others,
not only is the project unappealing, but the choice of the “core” is almost arbitrary.

3http://www.calculemus.net/meetings/standrews00/
4Supposing that one of the most important applications of such rigor would be the proof of

correctness of computer programs, one would hope that a usable axiomatization of computer
operations would be essential. The language of circuit theory and logic gates might then be
part of the fundamentals.

3



above? This question can be turned back on itself: if we emphasize effective
communication, does that mean we merely need to build a computer program
to read the works of Bourbaki and encode those works in OpenMath? Would we
then have a system that understands pure mathematics? A short history with
www references for encoding mathematics for computing and documentation is
in http://www.cs.berkeley.edu/~fateman/MVSD.html.

The limitations on formal systems and logic are, as pointed out above, less
pressing if our goal is one of building an encyclopedic collection consisting of
very many useful mathematical facts, not restricting them to rigorously correct
results and proofs. Not to exclude proofs, which can be stored as appropriate.
Indeed one might wonder if such a collection should be restricted to mathemat-
ical facts; physical, chemical, biological, historical, political information may be
stored as well, and somehow our mathematical system has turned into a search
engine. This seems to be unfair: a static collection of data is far less likely to
be useful than a collection of programmed “agents” that appear to understand
computations of various sorts. I am far more optimistic that this goal of building
agents, incrementally approached, can be useful. It is one followed to some ex-
tent by the builders of numerical scientific subroutine libraries, and in principle,
by the several symbolic subroutine libraries that have been produced recently.
Unfortunately, the absence of significant context needed in mathematics limits
the kind of computation done by stand-alone symbolic libraries. There seems to
be a better fit between grand programmes of mathematics and the more ambi-
tious environments maintained inside computer algebra systems. An example of
this is the work on special functions http://functions.wolfram.com/ which is
sponsored by Wolfram Research. The work at NIST http://dlmf.nist.gov/
on a digital library of mathematical functions, which seem so far to be a updated
hyperlinked TEX version of the classic Abramowitz and Stegun Handbook, may
be far more authoritative, but entirely static.

4 OpenMath or MathML

Turning to the SIGSAM Bulletin, one question which must strike a reader is
whether the OpenMath intention to represent the semantics of mathematics
has simply been taken over by XML/ MathML content. Contrary to Mike De-
war’s claim (p. 2) that “[MathML] is oriented mainly towards the presentation
(i.e. the rendering) of mathematical expressions” it is clear that it attempts
to address both semantics (content) and presentation. We’ll set this potential
quarrel aside except to note two points: (a) One person’s syntax is another
person’s semantics, and (b) On this matter it is quite reasonable to believe that
MathML has eaten OpenMath’s lunch5. There is an overlap in the MathML
and OpenMath personnel, so this does not represent a conflict, but to some

5One comment on a draft of this paper, “In the tried and tested tradition of EU-funded
projects the software has been kept hidden, under wraps and in a permanent state of devel-
opment for so long that MathML had time to appear, crash onto the world scene, get into
Mozilla and Explorer and become a W3C Recommendation.”

4



extent a usurpation by MathML of that part of OpenMath pertinent to K-12
mathematics.

5 OpenMath’s Intentions

“There is no definitive way in which OpenMath should be used, as the protocol
has been designed to be as flexible as possible.” This is a killer admission, in my
view. Indeed the “applications” illustrated are not solving problems that cause
any difficulties without OpenMath. We learn that each corresponding program
X must have a phrasebook which converts its internal form Y to an OpenMath
form which is, one hopes, the universal semantic notion of Y . But it seems that
except in trivial matters, its semantics may have to be encoded as “the meaning
of Y to the program X”. Thus the ideal of having n programs communicating
using n phrasebooks to/from OpenMath has been lost. The nth program must
have in its phrasebook a way of understanding “the meaning of Y to the program
X1, X2, · · · , Xn−1” if it is going to communicate effectively. In particular, the
n2 translations are still necessary. As Preito/Dalmas/Papegay point out (p. 23),
“Any user familiar with more than one computer algebra system can testify that
every system is different in various sometimes subtle ways.” and (p. 26) “The
programming facilities that are so important are completely unavailable.” To
provide a few examples, there may be an abstract notion of sinx in OpenMath,
but it does not correspond to the notion of Sin[x] in Mathematica or to the
notion of sin(x) in Maple or Macsyma. The interactions of these notations
with special flags pertaining to numeric precision, special angle simplification,
and other matters mean that the semantics are simply different. As another
even more primitive example, the semantics of floating-point number becomes
nearly unworkable if equality of these quantities is a matter for disagreement
(and it is, as between Mathematica and other systems, since Mathematica’s
version is more like an interval). And for the definition of plus, all we are told
for sure is a “formal” version of the comment that for all a,b | a + b = b
+ a . This is of course equally true for many operators, but, in its n-ary version,
unfortunately not true for computer arithmetic of finite precision. The other
properties of IEEE standard arithmetic are significantly oversimplified, as for
example the notion of NaN (not a number)6.

The illusion of effective phrasebooks is possible only if trivial items are being
exchanged, and possibly not even then. We are allowed the exchange of integers
and IEEE-standard floating-point numbers, symbols such as α or π, and possibly
the simple arithmetic operations on rational numbers, polynomials, and simple
algebraic systems. It is a misperception that pervades many of the SIGSAM
Bulletin collection (exception Preito) that somehow all the unexamined objects
that computer algebra systems (and other programs dealing with mathematics)
can and will follow suit immediately by extension, and furthermore it is somehow

6In case anyone wonders why I have waited so long to raise such issues, I raised them at
the first and second OpenMath meetings many years ago when such comments were simply
set aside.

5



only OpenMath that solves communication: “mathematicians have been under-
privileged as far as the web is concerned, reduced to using bitmaps and arcane
languages like TEX to speak with one another. Now at last things are changing:
the semantics of a mathematical object can be encoded using OpenMath or
possibly the content part of MathML...” OpenMath today can hardly approach
encoding what has been typeset to date in TEX.

In fact, if one opens almost any mathematical text and tries to encode one
formula after another in OpenMath, one will encounter substantial resistence
immediately. My favorite integral table by Gradshteyn and Rhyzik (GR) can
provide an example. If OpenMath cannot encode mathematics – if it cannot
even adequately encode the mathematics in a computer algebra system – af-
ter six years, what are the prospects for this to catch on? The alternatives
to OpenMath are not considered in the SIGSAM papers, but a technique us-
ing TEX macros for semantics has been used successfully for the latest edition
of GR. Alternative macro expansion allows for communication and typeset-
ting, as well as testing the mathematical validity of formulas. One would have
to first write a CD that not only included the mathematics of calculus, but
the additional notation for cross-references, citations of authority, the varia-
tions in notation, references to geometric domains, occasional figures of branch
cuts, the compression of formulas by (say) +/− notation, alternative by ver-
tical braces, section contexts (locally binding symbols on a per-section basis,
and other matters. To what end? would someone else use this CD? As an-
other example, an encoding (essentially in Lisp) of integration problems is used
for communication between the new Macintosh graphing calculator and a ta-
ble lookup on a web site (an alternative html interface to the same program
is at torte.cs.berkeley.edu:8010/tilu). Although we do not wish to hold
this particular program’s output up as an alternative model for general math-
ematical communication, in its construction we had to deal with concepts not
available in computer algebra systems. Some of the formulas provided are sub-
ject to symbolic value or symbolic type pre-conditions; sometimes we return a
multiplicity of possible formulas perhaps with different forms and/or regions of
validity.

6 Presentation

Examples of encoding sinx, which would be badly typeset by computer alge-
bra systems as sin(x) (see page 8 for the “CMP”) do not convince me that the
authors view of technology, as proposed, is sufficient for the task. Display is a
well-examined problem, addressed by every computer algebra system, though
not entirely solved. See for example Norbert Kajler, Neil Soiffer: “A Survey
of User Interfaces for Computer Algebra Systems”. J.Symb. Comp. 25(2):
127-159 (1998). OpenMath can occasionally claim to not have to deal with
presentation, but a discussion with practicing mathematicians would certainly
reveal that many are quite particular about the appearance of their mathemat-
ics. Indeed the display is central to conveying the right meaning to human

6



readers.
The SIGSAM article by David Carlisle on OpenMath, MathML, and XSL

simply cloaks the easy part of the display problem in obscurity. The easy part is
so simple, given an appropriate tree-like data structure, that I have on occasion
assigned it as an exercise for a beginning programming class. It is quite simple
when written in an appropriate language (Lisp). Most of what is required is a
formatting pass over a tree putting the format for each subtree in a rectangle
whose size is determined recursively to contain the rectangles of its constituent
subtrees. A simple second pass prints the contents of the boxes line by line. The
simplicity of this is obscured by the OpenMath demand that instead of writing
a program (once) that returns a displayable object, we should write, and debug,
a collection of formal XSL that describes the program that displays the object.
In the process of making this indirection, the real difficulties are forgotten.
It ignores (for example) the interesting problem of breaking expressions over
several lines (at all, much less efficiently), the variations in displaying precedence
by space or position (when are parentheses required), and many other issues
explored in the previously noted paper by Kajler/Soiffer.

The task of presenting written mathematics is solved rather well by TEX
which, in combination with the generation of diagrams, curves, and figures us-
ing associated tools, is now in common use by many publications. Can one do
better? The possibility exists of introducing animated or interactive mathemat-
ical notations or hyperlinks on the computer. I do not know if I’ve just missed
this, or if it is absent from OpenMath or MathML. But so far it appears that
OpenMath is proposing to replace adequate technology with inferior technology.

7 Communication in Practice

In the paper “Mathematica as an OpenMath application” we begin to see what
happens when one actually tries to use OpenMath. There is an admission
that “in spite of six years of work (including a dedicated three years European
project), there are not yet any widely available OpenMath applications.” The
authors explain the difficulties, especially in a commercial system without source
code, to describe a phrase book adequately7.

Supposing that Mathematica’s Mathlink is a special treat allowing programs
to be written in C and connected to another program via TCP/IP, is hardly an
advanced notion. Any programming language today without such facilities is
deficient for communication. The commercial or web-aware world has Java RMI,
Corba, etc. Thus having to interpose a 3,200 line C program between Mathe-
matica and an OpenMath application is itself an indictment of Mathematica as
a language and/or OpenMath as a representation.

7One might feel better about this complaint if there were not also complaints about Open-
Math code itself not being open source.

7



8 Programming Languages have something to
say

I found disturbing the apparent controversy in introducing scope and binding
through the lambda mechanism (reported by Strotmann/Kohout p.67). One
would hope that the linguistic analysis they provide would have permeated
the thinking of the OpenMath advocates from day one. These ideas are not
advanced technology in programming language design, and should have been
obvious at this point. The fact that binding, evaluation, substitution and re-
lated concepts have been so mangled by computer algebra systems (for example
Maple and Mathematica) should have served as object lessons to the OpenMath
designers. Instead of standing on the shoulders of those who have gone before,
we are standing on their toes.

9 Mathematics demonstrations

Moving on to another paper in the SIGSAM issue, Francis Wright’s description
of interactive math via MathML may not have much to do with OpenMath, but
it is an interesting paper describing a set of specific demonstration packages.
It circumscribes the solutions by imagining that technology such as CGI Perl
scripts are more or less required, and that CAS cannot be trusted very much.
In fact from personal experience I can say that there are several ways of gen-
erating interactions, and two (free, portable) packages in Lisp (CL-HTTP and
Allegro-serve) provide direct means for computer algebra systems or other sys-
tems written in Lisp to provide server dynamic html generation without brittle
interfaces through other languages. Tilu, previously mentioned, has been serv-
ing integration results since late 1995, and now provides about 130 responses a
day.

Wright’s recommendation of starting up a fresh system for each interaction
has its advantages, but a properly multi-threaded system can be built. The fact
that historically computer algebra systems are not, could be a call for action in
fixing this. If some of the (primarily European) projects in re-writing computer
algebra systems over the last decade had addressed this problem, instead of re-
writing well-understood polynomial or long-integer code, we might have more
interesting re-usable code.

By contrast, Tilu can handle multiple simultaneous queries, each in a thread.
(Since each query takes only about 10ms of CPU time, this probably has not
been exercised except in my own testing!). The response time, and the possibil-
ity of allowing a computation to span several sequential interactions (perhaps
using “cookies”) could improve a web interface. I cannot say for sure, but I
expect that OpenMath would not help.

There are of course other ways than I’ve used for providing web-based service.
One could use a different browser interface: Bill Schelter’s Maxima system
provides a browser/front-end written in Tcl/TK with the same interface to his
version of Macsyma, as well as GAP, Octave (a Matlab-lookalike) and other

8



systems. The MINSE system using an idea called “polymediating” is another
possibility.

10 Insularity

It seems that the people who are working on OpenMath are, for the most part,
no longer builders of general purpose computer algebra systems, nor are they in-
volved “in the trenches” in publishing of mathematics, educational/instructional
technology. They should be representing occupations which require cross-cutting
interdisciplinary approaches. Clearly the tempo of web-based enterprises re-
quires a faster cycle than is available with the processes put in place by the
OpenMath Society.

11 Conclusions

Can OpenMath be saved? Perhaps. If some real, hard, applications are at-
tempted, it may be possible to finally gather some understanding of what is
lacking. There is no proof of concept. We already know how hard it is to re-use
software. I suspect that each new encoding project may require the construction
of a substantially new CD depending only on the most primitive previous CDs
... because the previously constructed “advanced” CDs are insufficiently re-
usable. Each encoding project must justify the time and expense of producing
this CD even if the payoff is slim. A project interested in interfacing to some
single system (for arguments’ sake say Maple), can learn how to interchange
with Maple without OpenMath. Even if several systems are involved, it is still
easier than using OpenMath: I use TEX Macsyma, Mathematica, Lisp, Tilu,
and the Macintosh graphing calculator.

I suggest that if the OpenMath concept is to be validated, its advocates
need to test the concepts and implementation against some tasks that stretch
the envelope along the lines of mathematics as published instead of (a) arithmetic
as used in high school, or (b) the simplified hacked-up version of mathematics
in today’s computer algebra systems, or (c) tightly constrained packages such
as GAP and CoQ (p. 33). The tasks are easy to find. Encoding the complete
information from a large table of integrals. Encoding a book on functional
analysis, a book on methods of mathematical physics, a book on combinatorics.
The NIST revision of the Abramowitz/Stegun Handbook. Encoding any number
of journals whose contents are presumably already encoded in TEX. An encoding
would allow them to be re-typeset correctly and also allow the information to
be incorporated in the active knowledge of a computer algebra system. They
must demonstrate that contrary to all previous experience in re-using software,
the OpenMath people have solved the problem. Once some truly significant
program makes essential use of OpenMath – so essential and with so remarkable
a significance that many other programs will speak OpenMath simply to use it
– then there is a chance on validating the ideas.

9



12 Acknowledgments

I would like to thank those who offered suggestions on earlier drafts of this
document, and especially Arjeh Cohen, David Carlisle, and Mike Dewar for
their detailed comments. Any remaining errors of fact or misguided opinion are
my own.

(c) 2001 Richard J. Fateman.

10


