
CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 1

Sequential Logic Implementation

 Models for representing sequential circuits
 Abstraction of sequential elements
 Finite state machines and their state diagrams
 Inputs/outputs
 Mealy, Moore, and synchronous Mealy machines

 Finite state machine design procedure
 Verilog specification
 Deriving state diagram
 Deriving state transition table
 Determining next state and output functions
 Implementing combinational logic

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 2

react right away to leaving the wall

Mealy vs. Moore Machines

 Moore: outputs depend on current state only
 Mealy: outputs depend on current state and inputs
 Ant brain is a Moore Machine

 Output does not react immediately to input change
 We could have specified a Mealy FSM

 Outputs have immediate reaction to inputs
 As inputs change, so does next state, doesn’t commit until

clocking event

A

L’ R’ / TR, F

L / TL

L’ R / TL, F

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 3

D/1

E/1

B/0

A/0

C/0

1

0

0

0
0

1

1

1

1

0

reset

current next
reset input state state output
1 – – A
0 0 A B 0
0 1 A C 0
0 0 B B 0
0 1 B D 0
0 0 C E 0
0 1 C C 0
0 0 D E 1
0 1 D C 1
0 0 E B 1
0 1 E D 1

Specifying Outputs for a Moore Machine

 Output is only function of state
 Specify in state bubble in state diagram
 Example: sequence detector for 01 or 10

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 4

current next
reset input state state output
1 – – A 0
0 0 A B 0
0 1 A C 0
0 0 B B 0
0 1 B C 1
0 0 C B 1
0 1 C C 0

B

A

C

0/1

0/0

0/0

1/1

1/0

1/0

reset/0

Specifying Outputs for a Mealy
Machine

 Output is function of state and inputs
 Specify output on transition arc between states
 Example: sequence detector for 01 or 10

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 5

state feedback

inputs

outputsreg

Combinational
logic
for

Next State
Logic

for
outputs

inputs outputs

state feedback

regCombinational
logic for

Next State

Logic
for

outputs

Comparison of Mealy and Moore Machines

 Mealy Machines tend to have less states
 Different outputs on arcs (n^2) rather than states (n)

 Moore Machines are safer to use
 Outputs change at clock edge (always one cycle later)
 In Mealy machines, input change can cause output change as soon as

logic is done – a big problem when two machines are interconnected –
asynchronous feedback

 Mealy Machines react faster to inputs
 React in same cycle – don't need to wait for clock
 In Moore machines, more logic may be necessary to decode state

into outputs – more gate delays after

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 6

D Q

Q
B

A

clock

out

D Q

Q

D Q

Qclock

outA

B

Mealy and Moore Examples

 Recognize A,B = 0,1
 Mealy or Moore?

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 7

D Q

Q

D Q

Q

D Q

Q

D Q

Q

A

B

clock

out

D Q

Q

D Q

Q

A

B

clock

out

Mealy and Moore Examples (cont’d)

 Recognize A,B = 1,0 then 0,1
 Mealy or Moore?

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 8

Registered Mealy Machine (Really Moore)

 Synchronous (or registered) Mealy Machine
 Registered state AND outputs
 Avoids ‘glitchy’ outputs
 Easy to implement in programmable logic

 Moore Machine with no output decoding
 Outputs computed on transition to next state rather than

after entering
 View outputs as expanded state vector

Inputs
Outputs

Current State

output
logic

next state
logic

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 9

// State assignment
parameter zero = 0, one1 = 1, two1s = 2;

module reduce (out, clk, reset, in);
 output out;
 input clk, reset, in;
 reg out;
 reg [1:0] state; // state register
 reg [1:0] next_state;

Verilog FSM - Reduce 1s Example

 Change the first 1 to 0 in each string of 1’s
 Example Moore machine implementation

1

0

0

0

1
1

zero
[0]

one1
[0]

two1s
[1]

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 10

 always @(in or state)
 case (state)

 zero: begin // last input was a zero
 out = 0;
 if (in) next_state = one1;
 else next_state = zero;
 end

 one1: begin // we've seen one 1
 out = 0;
 if (in) next_state = two1s;
 else next_state = zero;
 end

 two1s: begin // we've seen at least 2 ones
 out = 1;
 if (in) next_state = two1s;
 else next_state = zero;
 end

 default: begin // in case we reach a bad state
 out = 0;
 next_state = zero;
 endcase

include all signals
that are input to state
and output equations

Moore Verilog FSM (cont’d)

1

0

0

0

1
1

zero
[0]

one1
[0]

two1s
[1]

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 11

// Implement the state register
 always @(posedge clk)
 if (reset) state <= zero;
 else state <= next_state;

endmodule

Moore Verilog FSM (cont’d)

1

0

0

0

1
1

zero
[0]

one1
[0]

two1s
[1]

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 12

7

module reduce (clk, reset, in, out);
 input clk, reset, in; output out;
 reg out; reg state; // state register
 reg next_state;
 parameter zero = 0, one = 1;

 always @(in or state)
 case (state)
 zero: begin // last input was a zero
 if (in) next_state = one;
 else next_state = zero;
 out = 0;
 end
 one: // we've seen one 1
 if (in) begin
 next_state = one;
 out = 1;
 end
 else begin
 next_state = zero;
 out = 0;
 end
 endcase

 always @(posedge clk)
 if (reset) state <= zero;
 else state <= next_state;

 endmodule

Mealy Verilog FSM for Reduce-1s Example

1/00/0

0/0

1/1

zero

one1

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 13

7

module reduce (clk, reset, in, out);
 input clk, reset, in; output out;
 reg out; reg state; // state register
 reg next_state; reg next_out;
 parameter zero = 0, one = 1;

 always @(in or state)
 case (state)
 zero: begin // last input was a zero
 if (in) next_state = one;
 else next_state = zero;
 next_out = 0;
 end
 one: // we've seen one 1
 if (in) begin
 next_state = one;
 next_out = 1;
 end
 else begin
 next_state = zero;
 next_out = 0;
 end
 endcase

 always @(posedge clk)
 if (reset) begin
 state <= zero; out <= 0;
 end
 else begin
 state <= next_state; out <= next_out;
 end

endmodule

Synchronous Mealy Verilog FSM for
Reduce-1s Example

1/00/0

0/0

1/1

zero

one1

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 14

Announcements

 Review Session, Today, 5-6 PM, 125 Cory Hall

 Examination, Wednesday, 1-2:30 PM, 125 Cory Hall
 Five Quiz-like Questions -- Please Read Them Carefully! They

are not intended to be tricky; they should contain all the
information you need to answer the question correctly

 No calculators or other gadgets are necessary! Don’t bring
them! No blue books! All work on the sheets handed out!

 Do bring pencil and eraser please! If you like to unstaple the
exam pages, then bring a stapler with you! Write your name
and student ID on EVERY page in case they get separated --
it has happened!

 Don’t forget your two-sided 8.5” x 11” crib sheet!

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 15

Announcements

 Examination, Wednesday, 1-2:30 PM, 125 Cory Hall
 Topics covered through last Wednesday

 Combinational logic: design and optimization (K-maps up to and including 6
variables)

 Implementation: Simple gates (minimum wires and gates), PLA structures
(minimum unique terms), Muxes, Decoders, ROMs, (Simplified) Xilinx CLB

 Sequential logic: R-S latches, flip-flops, transparent vs. edge-triggered
behavior, master/slave concept

 Basic Finite State Machines: Representations (state diagrams, transition
tables), Moore vs. Mealy Machines, Shifters, Registers, Counters

 Structural and Behavioral Verilog for combinational and sequential logic
 Labs 1, 2, 3
 K&B: Chapters 1, 2 (2.1-2.5), 3 (3.1, 3.6), 4 (4.1, 4.2, 4.3), 6 (6.1, 6.2.1,

6.3), 7 (7.1, 7.2, 7.3)

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 16

Vending
Machine

FSM

N

D

Reset

Clock

OpenCoin
Sensor

Release
Mechanism

Example: Vending Machine

 Release item after 15 cents are deposited

 Single coin slot for dimes, nickels

 No change

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 17

Example: Vending Machine (cont’d)

 Suitable Abstract Representation
 Tabulate typical input sequences:

 3 nickels
 nickel, dime
 dime, nickel
 two dimes

 Draw state diagram:
 Inputs: N, D, reset
 Output: open chute

 Assumptions:
 Assume N and D asserted

for one cycle
 Each state has a self loop

for N = D = 0 (no coin)

S0

Reset

S2

D

S6
[open]

D

S4
[open]

D

S1

N

S3

N

S7
[open]

N

S5
[open]

N

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 18

Example: Vending Machine (cont’d)

 Minimize number of states - reuse states whenever possible

symbolic state table

present inputs next output
state D N state open
 0¢ 0 0 0¢ 0

0 1 5¢ 0
1 0 10¢ 0
1 1 – –

 5¢ 0 0 5¢ 0
0 1 10¢ 0
1 0 15¢ 0
1 1 – –

10¢ 0 0 10¢ 0
0 1 15¢ 0
1 0 15¢ 0
1 1 – –

15¢ – – 15¢ 1

0¢

Reset

5¢

N

N

N + D

10¢

D

15¢
[open]

D

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 19

present state inputs next state output
Q1 Q0 D N D1 D0 open

 0 0 0 0 0 0 0
0 1 0 1 0
1 0 1 0 0
1 1 – – –

 0 1 0 0 0 1 0
0 1 1 0 0
1 0 1 1 0
1 1 – – –

 1 0 0 0 1 0 0
0 1 1 1 0
1 0 1 1 0
1 1 – – –

 1 1 – – 1 1 1

Example: Vending Machine (cont’d)

 Uniquely Encode States

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 20

D1 = Q1 + D + Q0 N

D0 = Q0’ N + Q0 N’ + Q1 N + Q1 D

OPEN = Q1 Q0

Example: Vending Machine (cont’d)

 Mapping to Logic
0 0 1 1

0 1 1 1

X X X X

1 1 1 1

Q1D1

Q0

N
D

0 1 1 0

1 0 1 1

X X X X

0 1 1 1

Q1D0

Q0

N
D

0 0 1 0

0 0 1 0

X X X X

0 0 1 0

Q1Open

Q0

N
D

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 21

present state inputs next state output
Q3 Q2 Q1 Q0 D N D3 D2 D1 D0 open
0 0 0 1 0 0 0 0 0 1 0

0 1 0 0 1 0 0
1 0 0 1 0 0 0
1 1 - - - - -

0 0 1 0 0 0 0 0 1 0 0
0 1 0 1 0 0 0
1 0 1 0 0 0 0
1 1 - - - - -

0 1 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0
1 0 1 0 0 0 0
1 1 - - - - -

1 0 0 0 - - 1 0 0 0 1

D0 = Q0 D’ N’

D1 = Q0 N + Q1 D’ N’

D2 = Q0 D + Q1 N + Q2 D’ N’

D3 = Q1 D + Q2 D + Q2 N + Q3

OPEN = Q3

Example: Vending Machine (cont’d)

 One-hot Encoding

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 22

Equivalent Mealy and Moore State
Diagrams
 Moore machine

 outputs associated with state

0¢
[0]

10¢
[0]

5¢
[0]

15¢
[1]

N’ D’ + Reset

D

D

N

N+D

N

N’ D’

Reset’

N’ D’

N’ D’

Reset

Mealy machine
outputs associated with transitions

0¢

10¢

5¢

15¢

(N’ D’ + Reset)/0

D/0

D/1

N/0

N+D/1

N/0

N’ D’/0

Reset’/1

N’ D’/0

N’ D’/0

Reset/0

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 23

7

module vending (open, Clk, Reset, N, D);
 input Clk, Reset, N, D; output open;
 reg open; reg state; // state register
 reg next_state;
 parameter zero = 0, five = 1, ten = 2, fifteen = 3;

 always @(N or D or state)
 case (state)
 zero: begin
 if (D) next_state = five;
 else if (N) next_state = ten;
 else next_state = zero;
 open = 0;
 end
 …
 fifteen: begin
 if (!Reset) next_state = fifteen;
 else next_state = zero;
 open = 1;
 end
 endcase

 always @(posedge clk)
 if (Reset || (!N && !D)) state <= zero;
 else state <= next_state;

 endmodule

Moore Verilog FSM for Vending Machine

0¢
[0]

10¢
[0]

5¢
[0]

15¢
[1]

N’ D’ + Reset

D

D

N

N+D

N

N’ D’

Reset’

N’ D’

N’ D’

Reset

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 24

7

module vending (open, Clk, Reset, N, D);
 input Clk, Reset, N, D; output open;
 reg open; reg state; // state register
 reg next_state; reg next_open;
 parameter zero = 0, five = 1, ten = 2, fifteen = 3;

 always @(N or D or state)
 case (state)
 zero: begin
 if (D) begin
 next_state = ten; next_open = 0;
 end
 else if (N) begin
 next_state = five; next_open = 0;
 end
 else begin
 next_state = zero; next_open = 0;
 end
 end
 …
 endcase

 always @(posedge clk)
 if (Reset || (!N && !D)) begin state <= zero; open <= 0; end
 else begin state <= next_state; open <= next_open; end
 endmodule

Mealy Verilog FSM for Vending Machine

0¢

10¢

5¢

15¢

(N’ D’ + Reset)/0

D/0

D/1

N/0

N+D/1

N/0

N’ D’/0

Reset’/1

N’ D’/0

N’ D’/0

Reset/0

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 25

Example: Traffic Light Controller

 A busy highway is intersected by a little used farmroad
 Detectors C sense the presence of cars waiting on the farmroad

 with no car on farmroad, light remain green in highway direction
 if vehicle on farmroad, highway lights go from Green to Yellow to Red,

allowing the farmroad lights to become green
 these stay green only as long as a farmroad car is detected but never

longer than a set interval
 when these are met, farm lights transition from Green to Yellow to

Red, allowing highway to return to green
 even if farmroad vehicles are waiting, highway gets at least a set

interval as green
 Assume you have an interval timer that generates:

 a short time pulse (TS) and
 a long time pulse (TL),
 in response to a set (ST) signal.
 TS is to be used for timing yellow lights and TL for green lights

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 26

highway

farm road

car sensors

Example: Traffic Light Controller
(cont’d)

 Highway/farm road intersection

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 27

Example: Traffic Light Controller
(cont’d)
 Tabulation of Inputs and Outputs

inputs description outputs description
reset place FSM in initial state HG, HY, HR assert green/yellow/red highway lights
C detect vehicle on the farm road FG, FY, FR assert green/yellow/red highway lights
TS short time interval expired ST start timing a short or long interval
TL long time interval expired

 Tabulation of unique states – some light configurations
imply others

state description
S0 highway green (farm road red)
S1 highway yellow (farm road red)
S2 farm road green (highway red)
S3 farm road yellow (highway red)

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 28

S0: HG

S1: HY

S2: FG

S3: FY

Example: Traffic Light Controller
(cont’d)

 State Diagram Reset

TS'

TS / ST

(TL•C)'

TL•C / ST

TS'

TS / ST

(TL+C')'

TL+C' / ST

S0

S2

S3S1

TL+C / ST

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 29

Inputs Present State Next State Outputs
C TL TS ST H F
0 – – HG HG 0 Green Red
– 0 – HG HG 0 Green Red
1 1 – HG HY 1 Green Red
– – 0 HY HY 0 Yellow Red
– – 1 HY FG 1 Yellow Red
1 0 – FG FG 0 Red Green
0 – – FG FY 1 Red Green
– 1 – FG FY 1 Red Green
– – 0 FY FY 0 Red Yellow
– – 1 FY HG 1 Red Yellow

SA1: HG = 00 HY = 01 FG = 11 FY = 10
SA2: HG = 00 HY = 10 FG = 01 FY = 11
SA3: HG = 0001 HY = 0010 FG = 0100 FY = 1000 (one-hot)

output encoding – similar problem
to state assignment
(Green = 00, Yellow = 01, Red = 10)

Example: Traffic Light Controller
(cont’d)
 Generate state table with symbolic states

 Consider state assignments

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 30

Traffic Light Controller Verilog

module traffic (ST, Clk, Reset, C, TL, TS);
 input Clk, Reset, C, TL, TS; output ST;
 reg ST; reg state;
 reg next_state; reg next_ST;
 parameter S0 = 0, S1 = 1, S2 = 2, S3 = 3;

 always @(C or TL or TS or state)
 case (state)
 S0: if (!(TL && C)) begin
 next_state = S0; next_ST = 0;
 else if (TL || C) begin
 next_state = S1; next_ST = 1;
 end
 …
 endcase

 always @(posedge Clk)
 if (Reset) begin state <= S0; ST <= 0; end
 else begin state <= next_state; ST <= next_ST; end

 endmodule

Reset

TS'

TS / ST

(TL•C)'

TL•C

TS'

TS / ST

(TL+C')'

TL+C' / ST

S0

S2

S3S1

TL+C / ST

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 31

Logic for Different State Assignments
 SA1

NS1 = C•TL'•PS1•PS0 + TS•PS1'•PS0 + TS•PS1•PS0' + C'•PS1•PS0 + TL•PS1•PS0
NS0 = C•TL•PS1'•PS0' + C•TL'•PS1•PS0 + PS1'•PS0

ST = C•TL•PS1'•PS0' + TS•PS1'•PS0 + TS•PS1•PS0' + C'•PS1•PS0 + TL•PS1•PS0
H1 = PS1 H0 = PS1'•PS0
F1 = PS1' F0 = PS1•PS0'

 SA2
NS1 = C•TL•PS1' + TS'•PS1 + C'•PS1'•PS0
NS0 = TS•PS1•PS0' + PS1'•PS0 + TS'•PS1•PS0

ST = C•TL•PS1' + C'•PS1'•PS0 + TS•PS1
H1 = PS0 H0 = PS1•PS0'
F1 = PS0' F0 = PS1•PS0

 SA3
NS3 = C'•PS2 + TL•PS2 + TS'•PS3 NS2 = TS•PS1 + C•TL'•PS2
NS1 = C•TL•PS0 + TS'•PS1 NS0 = C'•PS0 + TL'•PS0 + TS•PS3

ST = C•TL•PS0 + TS•PS1 + C'•PS2 + TL•PS2 + TS•PS3
H1 = PS3 + PS2 H0 = PS1
F1 = PS1 + PS0 F0 = PS3

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 32

D0 = reset'(Q0'N + Q0N' + Q1N + Q1D)
D1 = reset'(Q1 + D + Q0N)
OPEN = Q1Q0

Vending Machine Example Revisted
(PLD mapping)

DQ

DQ

DQ

Q0

Q1

Open

Com

Seq

Seq

CLK

N

D

Reset

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 33

Vending Machine (cont’d)
 OPEN = Q1Q0 creates a combinational delay after Q1 and Q0

change
 This can be corrected by retiming, i.e., move flip-flops and logic

through each other to improve delay
 OPEN = reset'(Q1 + D + Q0N)(Q0'N + Q0N' + Q1N + Q1D)

 = reset'(Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D)
 Implementation now looks like a synchronous Mealy machine

 Common for programmable devices to have FF at end of logic

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 34

OPEN = reset'(Q1Q0N' + Q1N + Q1D + Q0'ND + Q0N'D)

Vending Machine (Retimed PLD
Mapping)

OPEN

DQ

DQ

DQ

Q0

Q1

Open

Seq

Seq

Seq

CLK

N

D

Reset

CS 150 - Fall 2005 – Lec #7: Sequential Implementation – 35

Sequential Logic Implementation
Summary

 Models for representing sequential circuits
 Abstraction of sequential elements
 Finite state machines and their state diagrams
 Inputs/outputs
 Mealy, Moore, and synchronous Mealy machines

 Finite state machine design procedure
 Verilog specification
 Deriving state diagram
 Deriving state transition table
 Determining next state and output functions
 Implementing combinational logic

