- SYNCHRONOUS SEQUENTIAL SYSTEMS
- MEALY AND MOORE MACHINES
- TIME BEHAVIOR
- STATE MINIMIZATION

1

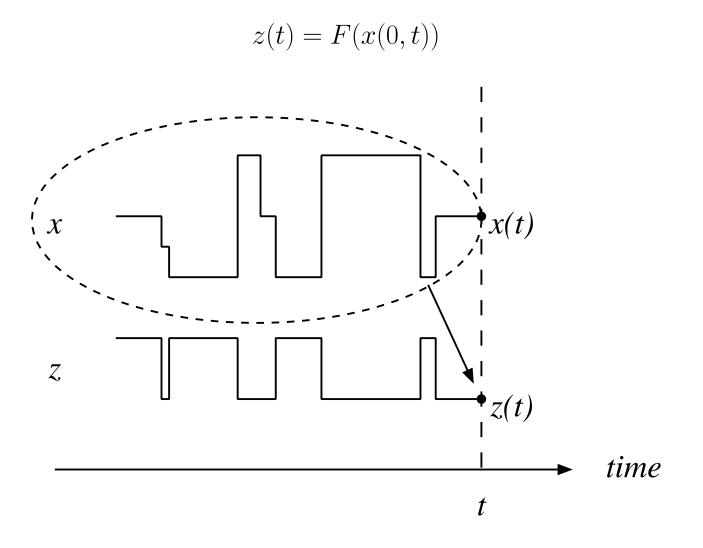


Figure 7.1: INPUT AND OUTPUT TIME FUNCTIONS.

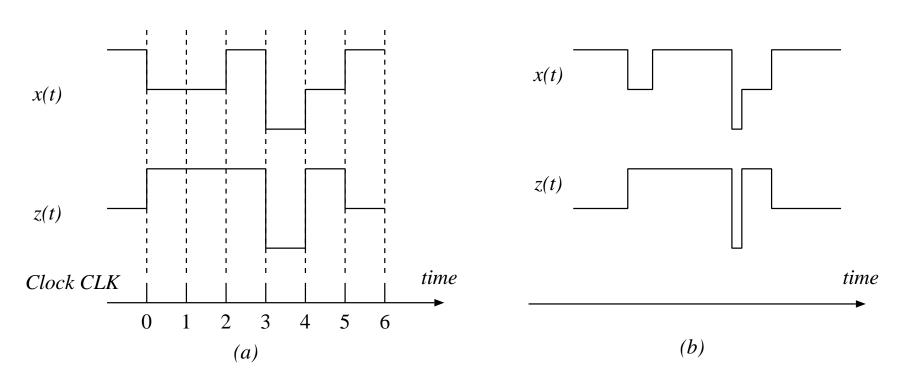


Figure 7.2: a) SYNCHRONOUS BEHAVIOR. b) ASYNCHRONOUS BEHAVIOR.

- CLOCK
- I/O SEQUENCE $x(t_1, t_2)$

$$x(2,5) = aabc$$

 $z(2,5) = 1021$

Х	1638753
у	3652425
Ζ	5291178

• LEAST-SIGNIFICANT DIGIT FIRST (at t=0)

t	0	1	2	3	4	5	6
x(t)	3	5	7	8	3	6	1
$\frac{t}{x(t)}$ y(t)							
z(t)	8	7	1	1	9	2	5

STATE DESCRIPTION

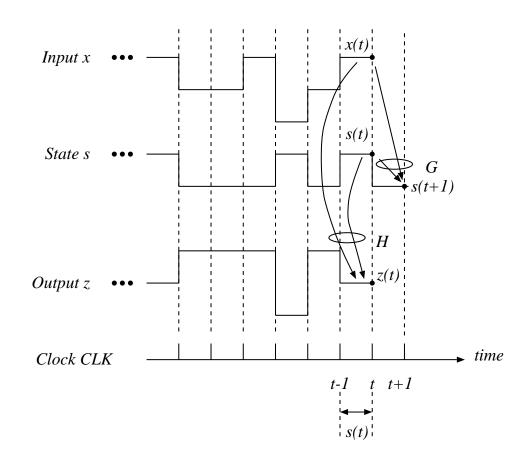


Figure 7.3: OUTPUT AND STATE TRANSITION FUNCTIONS

 $\begin{array}{lll} \mbox{Input:} & x(t), y(t) \in \{0, 1, ..., 9\} \\ \mbox{Output:} & z(t) \in \{0, 1, ..., 9\} \\ \mbox{State:} & s(t) \in \{0, 1\} \mbox{ (the carry)} \\ \mbox{Initial state:} & s(0) = 0 \\ \end{array}$

Functions: The transition and output functions are

$$s(t+1) = \begin{cases} 1 & \text{if } x(t) + y(t) + s(t) \ge 10 \\ 0 & \text{otherwise} \end{cases}$$
$$z(t) = (x(t) + y(t) + s(t)) \mod 10$$

EXAMPLE:

t	0	1	2	3	4	5	6
x(t)	3	5	7	8	3	6	1
y(t)	5	2	4	2	5	6	3
s(t)	0	0	0	1	1	0	1
$ \begin{array}{r} x(t) \\ y(t) \\ \hline s(t) \\ z(t) \end{array} $	8	7	1	1	9	2	5

TIME-BEHAVIOR SPECIFICATION:

 $\begin{array}{lll} \mbox{Input:} & x(t) \in \{a,b\} \\ \mbox{Output:} & z(t) \in \{0,1\} \end{array}$

Function: $z(t) = \begin{cases} 1 & \text{if } x(0,t) \text{ contains an even number of } b's \\ 0 & \text{otherwise} \end{cases}$

I/O SEQUENCE:

Input:	$x(t) \in \{a, b\}$
Output:	$z(t) \in \{0, 1\}$
State:	$s(t) \in \{\text{EVEN, ODD}\}$
Initial state:	s(0) = EVEN

Functions: Transition and output functions

PS	x(t) = a	x(t) = b
EVEN	EVEN, 1	ODD, 0
ODD	odd, 0	EVEN, 1
	NS,	z(t)

Mealy machine

$$z(t) = H(s(t), x(t))$$
$$s(t+1) = G(s(t), x(t))$$

Moore machine

$$z(t) = H(s(t))$$

$$s(t+1) = G(s(t), x(t))$$

• EQUIVALENT IN CAPABILITIES

Introduction to Digital Systems

Input:	$x(t) \in \{a, b, c\}$
Output:	$z(t) \in \{0,1\}$
State:	$s(t) \in \{S_0, S_1, S_2, S_3\}$
Initial state:	$s(0) = S_0$

Functions: Transition and output functions:

PS	Input			
	a	b	С	
S_0	S_0	S_1	S_1	0
S_1	S_2	S_0	S_1	1
S_2	S_2	S_3	S_0	1
S_3	S_0	S_1	S_2	0
	NS			Output

• STATE DIAGRAM

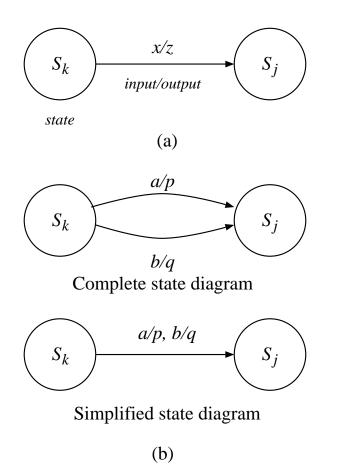
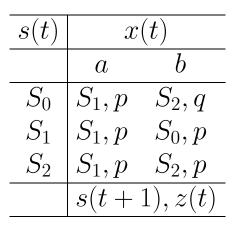


Figure 7.4: (a) STATE DIAGRAM REPRESENTATION. (b) SIMPLIFIED STATE DIAGRAM NOTATION.

Functions: The transition and output functions are



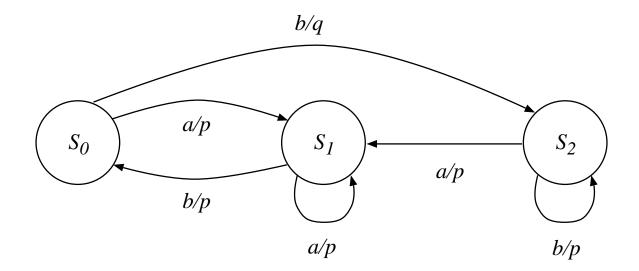


Figure 7.5: STATE DIAGRAM FOR EXAMPLE 7.6.

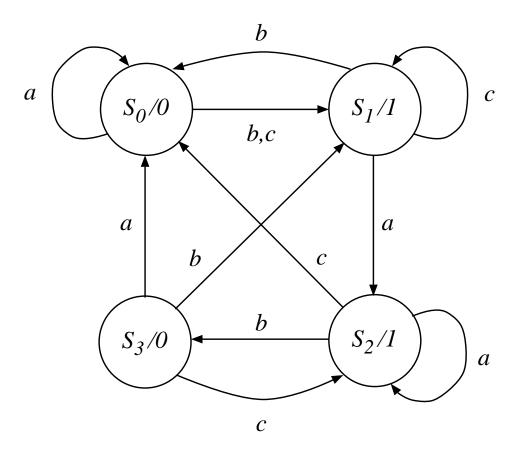


Figure 7.6: STATE DIAGRAM FOR EXAMPLE 7.5

Input:

$$x(t) \in \{0, 1, 2, 3\}$$

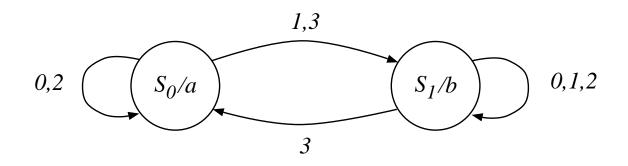
 Output:
 $z(t) \in \{a, b\}$

 State:
 $s(t) \in \{S_0, S_1\}$

 Initial state:
 $s(0) = S_0$

Functions: The transition and output functions are

$$s(t+1) = \begin{cases} S_0 \text{ if } (s(t) = S_0 \\ \text{ and } [x(t) = 0 \text{ or } x(t) = 2]) \\ \text{ or } (s(t) = S_1 \text{ and } x(t) = 3) \\ S_1 \text{ otherwise} \end{cases}$$
$$z(t) = \begin{cases} a \text{ if } s(t) = S_0 \\ b \text{ if } s(t) = S_1 \end{cases}$$



STATE NAMES

Example 7.8: INTEGERS AS STATE NAMES

A MODULO-64 COUNTER

Functions: The transition and output functions are

$$s(t+1) = [s(t) + x(t)] \mod 64$$
$$z(t) = s(t)$$

Input:
$$e(t) \in \{1, 2, ..., 55\}$$
Output: $z(t) \in \{0, 1, 2, ..., 55\}$ State: $\underline{s}(t) = (s_{55}, ..., s_1), s_i \in \{0, 1, 2, ..., 99\}$ Initial state: $\underline{s}(0) = (0, 0, ..., 0)$

Functions: The transition and output functions are

$$s_i(t+1) = \begin{cases} [s_i(t)+1] \mod 100 & \text{if} \quad e(t) = i \\ i = 1, 2, \dots, 55 \\ s_i(t) & \text{otherwise} \end{cases}$$

$$z(t) = \begin{cases} i & \text{if} \quad e(t) = i \text{ and } s_i(t) = 99 \\ 0 & \text{otherwise} \end{cases}$$

• STATE DESCRIPTION \Rightarrow I/O SEQUENCE (Example 7.10)

Initial state: $s(0) = S_2$ Functions: Transition and output functions are

\overline{P}	S	x(t)			
		a	b	С	
S	0	S_0	S_1	S_1	p
S	1	S_2	S_0	S_1	q
S	2^{2}	S_2	S_3	S_0	q
S	3^{\prime}	S_0	S_1	S_2	p
			NS	1	z(t)
t	0	1	. 2	2 3	4
x	a	b b) (e a	,
S	S_{2}	$_2 S$	S_2	$S_3 S_2$	$_2 S_2$
\mathcal{Z}	q	q	r p	p q	

• NOT ALL TIME-BEHAVIORS ARE REALIZABLE:

 $z(t) = \begin{cases} 1 & \text{if } x(0,t) \text{ has same number of } 0'\text{s and } 1'\text{s} \\ 0 & \text{otherwise} \end{cases}$

s(t) = DIFFERENCE BETWEEN NUMBER OF 1'S AND 0'S

$$s(t+1) = \begin{cases} s(t) + 1 & \text{if} \quad x(t) = 1\\ s(t) - 1 & \text{otherwise} \end{cases}$$

$$z(t) = \begin{cases} 1 & \text{if} \quad s(t) = 0 \\ 0 & \text{otherwise} \end{cases}$$

 \Rightarrow DIFFERENCE UNBOUNDED: NOT A FINITE-STATE SYSTEM

1. DETERMINE A SET OF STATES REPRESENTING REQUIRED EVENTS

2. DETERMINE THE TRANSITION FUNCTION

3. DETERMINE THE OUTPUT FUNCTION

• Example 7.11

$$\begin{array}{ll} \mathsf{Input:} & x(t) \in \{0,1\} \\ \mathsf{Output:} & z(t) \in \{0,1\} \\ \mathsf{Function:} & z(t) = \left\{ \begin{array}{ll} 1 & \mathbf{if} & x(t-3,t) = 1101 \\ 0 & \mathbf{otherwise} \end{array} \right. \end{array}$$

• PATTERN DETECTOR \Rightarrow DETECT SUBPATTERNS

State indicates that

- S_{init} | Initial state; also no subpattern
- S_1 | First symbol (1) of pattern has been detected
- S_{11} | Subpattern 11 has been detected
- S_{110} | Subpattern 110 has been detected

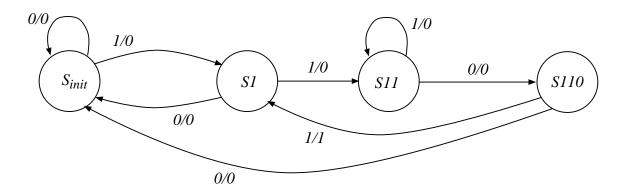


Figure 7.8: STATE DIAGRAM FOR Example 7.11

$$z(t) = F(x(t - m + 1, t))$$

Example 7.12:

$$z(t) = \begin{cases} p & \text{if } x(t-3,t) = aaba \\ q & \text{otherwise} \end{cases}$$

\Rightarrow FINITE MEMORY OF LENGTH FOUR

- ALL FINITE-MEMORY MACHINES ARE FS SYSTEMS
- NOT ALL FS SYSTEMS ARE FINITE MEMORY

$$z(t) = \begin{cases} 1 & \text{if number of } 1'\text{s in } x(0,t) \text{ is even} \\ 0 & \text{otherwise} \end{cases}$$

- THE STATE DESCRIPTION IS PRIMARY
- FSM PRODUCING CONTROL SIGNALS
- CONTROL SIGNALS DETERMINE ACTIONS PERFORMED IN OTHER PARTS OF SYSTEM
- *AUTONOMOUS*: FIXED SEQUENCE OF STATES, INDEPENDENT OF INPUTS

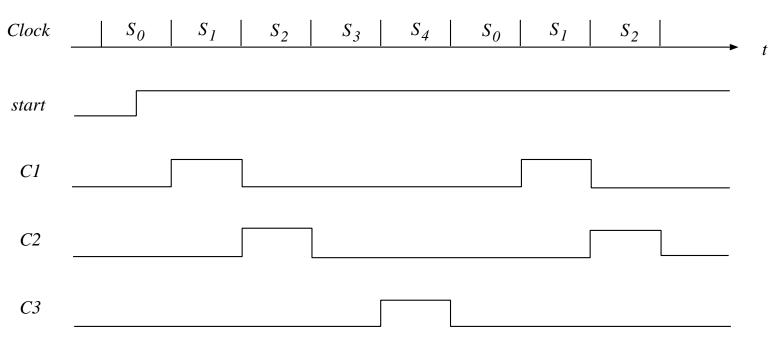


Figure 7.9: AUTONOMOUS CONTROLLER: TIMING DIAGRAM.

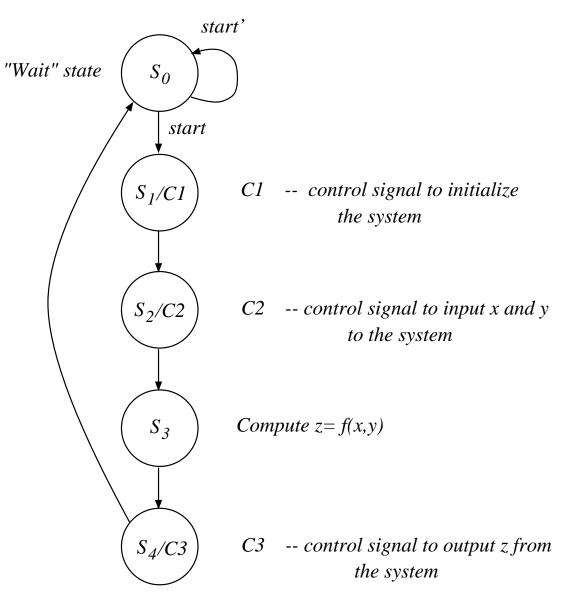
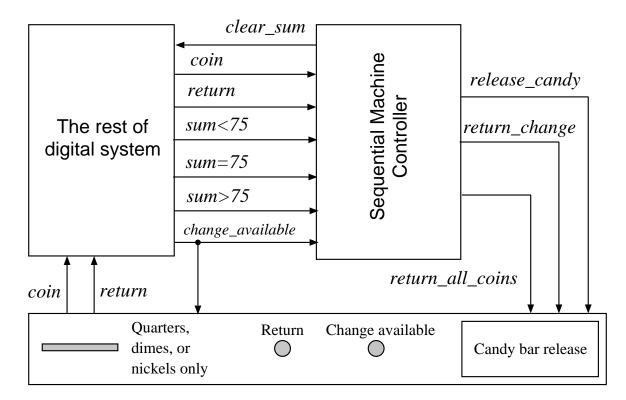


Figure 7.10: AUTONOMOUS CONTROLLER: STATE DIAGRAM.



Note: $coin \cdot return = 0$

Figure 7.11: CONTROLLER FOR SIMPLE VENDING MACHINE: BLOCK DIAGRAM.

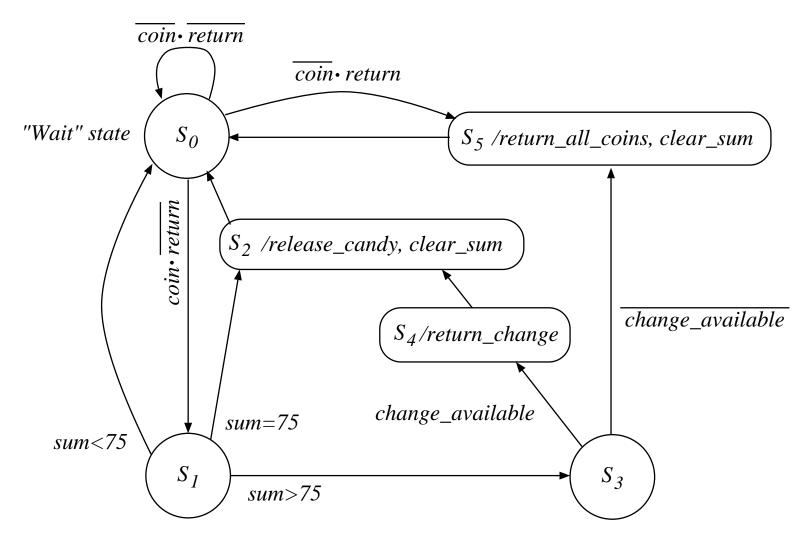


Figure 7.12: CONTROLLER FOR SIMPLE VENDING MACHINE: STATE DIAGRAM.

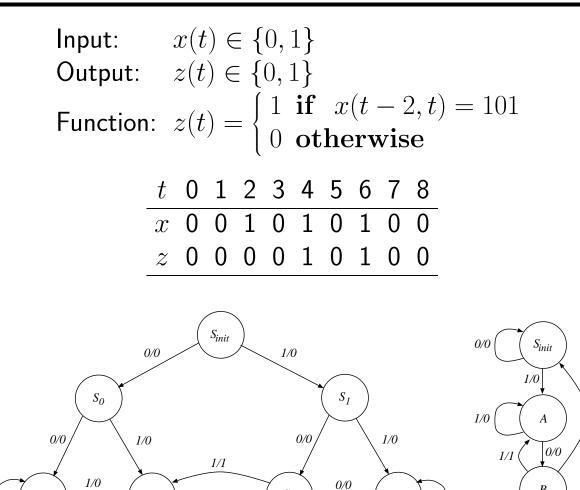


Figure 7.13: a) STATE DIAGRAM WITH REDUNDANT STATES; b) REDUCED STATE DIAGRAM

 S_{10}

1/0

 S_{11}

1/0

Introduction to Digital Systems

0/0

 S_{00}

*S*₀₁

0/0

0/0

(a)

7 – Specification of Sequential Systems

0/0

В

(b)

28

• k-DISTINGUISHABLE STATES: DIFF. OUTPUT SEQUENCES

 $z(x(t, t + k - 1), S_v) \neq z(x(t, t + k - 1), S_w)$

EXAMPLE:

 $\begin{array}{cccc} {\sf State} & x(3,7) & z(3,7) \\ S_1 & 0210 & 0011 \\ S_3 & 0210 & 0001 \end{array}$

- k-EQUIVALENT STATES: NOT DISTINGUISHABLE FOR SEQUENCES OF LENGTH k
- P_k : PARTITION OF STATES INTO k-EQUIVALENT CLASSES
- \bullet EQUIVALENT STATES NOT DISTINGUISHABLE FOR ANY k

Input:	$x(t) \in \{a, b, c\}$
Output:	$z(t) \in \{0, 1\}$
State:	$s(t) \in \{A, B, C, D, E, F\}$
Initial state:	s(0) = A

Functions: TRANSITION AND OUTPUT

• A and B ARE 1-DISTINGUISHABLE BECAUSE

 $z(b,A) \neq z(b,B)$

• $A \text{ and } C \text{ ARE } 1\text{-} EQUIVALENT BECAUSE}$

 $z(x(t), A) = z(x(t), C), \quad for \ all \ x(t) \in I$

• A and C ARE ALSO 2-EQUIVALENT BECAUSE

$$\begin{array}{rcl} z(aa,A) &=& z(aa,C) &=& 00 \\ z(ab,A) &=& z(ab,C) &=& 01 \\ z(ac,A) &=& z(ac,C) &=& 00 \\ z(ba,A) &=& z(ba,C) &=& 10 \\ z(bb,A) &=& z(bb,c) &=& 10 \\ z(bc,A) &=& z(bc,C) &=& 11 \\ z(ca,A) &=& z(ca,C) &=& 00 \\ z(cb,A) &=& z(cc,C) &=& 01 \end{array}$$

```
Obtaining P_1: DIRECTLY FROM OUTPUT FUNCTION
From P_i to P_{i+1} ...
```

1. P_{i+1} IS A REFINEMENT OF P_i (states (i+1)-equiv. must also be i-equiv.)

 $\begin{array}{ccc} P_i & (A,B,C)(D) \\ & \text{possible} & \text{not possible} \\ P_{i+1} & (A,C)(B)(D) & (A,D)(B)(C) \end{array}$

FOR (i+1)-EQUIVALENT STATES S_v and S_w

$$z(x(t,t+i),S_v) = z(x(t,t+i),S_w)$$

FOR ARBITRARY x(t, t + i)THEN $z(x(t, t + i - 1), S_v) = z(x(t, t + i - 1), S_w)$ EXAMPLE: $z(abcd, S_v) = z(abcd, S_w) = 1234$ THEN $z(abc, S_v) = z(abc, S_w) = 123$

Introduction to Digital Systems

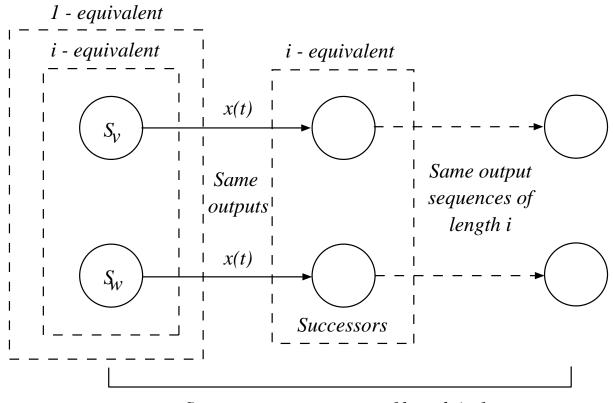
- 2. TWO STATES ARE (i+1)-EQUIVALENT IF AND ONLY IF
 - a) THEY ARE i-EQUIVALENT, and

```
b) FOR ALL x \in \mathit{I} , the corresponding next states are i-equivalent
```

PROOF:

IF PART:

- SINCE THE STATES ARE i-EQUIVALENT, THEY ARE ALSO 1-EQUIVALENT
- THEREFORE, IF THE NEXT STATES ARE i-EQUIVALENT, THE STATES ARE (i+1)-EQUIVALENT



Same output sequences of length i+1

Figure 7.14: ILLUSTRATION OF (i + 1)-EQUIVALENCE RELATION.

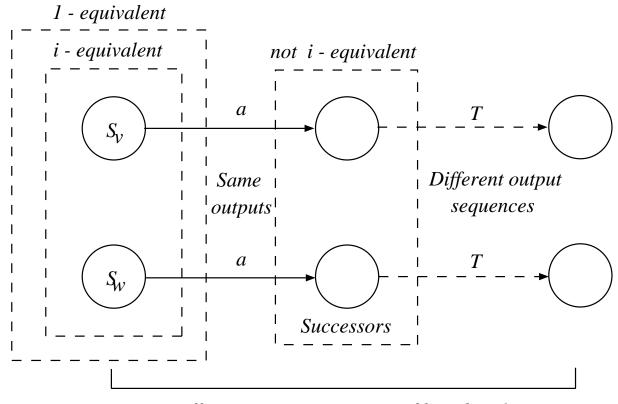
ONLY IF PART: BY CONTRADICTION

• IF FOR SOME INPUT a THE NEXT STATES ARE NOT i-EQUIVALENT THEN THERE EXISTS A SEQUENCE T OF LENGTH i SUCH THAT THESE NEXT STATES ARE DISTINGUISHABLE.

THEREFORE,

 $z(aT, S_v) \neq z(aT, S_w)$

 $\rightarrow S_v$ AND S_w NOT (i+1)-EQUIVALENT



Different output sequences of length i+1

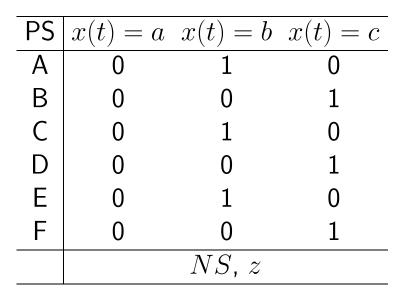
Figure 7.15: ILLUSTRATION OF (i + 1)-EQUIVALENCE RELATION.

- STOP WHEN P_{i+1} IS THE SAME AS P_i
 - THIS IS THE EQUIVALENCE PARTITION
 - THE PROCESS ALWAYS TERMINATES

1. OBTAIN P_1 (look at the outputs)

2. OBTAIN P_{i+1} FROM P_i BY GROUPING STATES THAT ARE *i*-EQUIVALENT AND WHOSE CORRESPONDING SUCCESSORS ARE *i*-EQUIVALENT

- 3. TERMINATE WHEN $P_{i+1} = P_i$
- 4. WRITE THE REDUCED TABLE



• 1-EQUIVALENT IF SAME "row pattern"

 $P_1 = (A, C, E) \quad (B, D, F)$

- NUMBER THE CLASSES IN P_1
- TWO STATES ARE IN THE SAME CLASS OF P_2 IF THEIR SUCCESSOR COLUMNS HAVE THE SAME NUMBERS

	1			2		
P_1	(А,	C,	E)	(<i>B</i> ,	<i>D</i> ,	F)
a	1	1 2	1	2	2	2
b	2	2	2	2	2	1
\mathcal{C}	2	2	2	1	1	2

BY IDENTIFYING IDENTICAL COLUMNS OF SUCCESSORS, WE GET

 $P_2 = (A, C, E) (B, D) (F)$

• SAME PROCESS TO OBTAIN THE NEXT PARTITION:

		1		2		3
P_2	(<i>A</i> ,	С,	E)	(<i>B</i> ,	D),	(F)
a	1	1	1	3	3	
b	2	2	3	2	2	
\mathcal{C}	2	2	3	1	1	

$$P_3 = (A, C) (E) (B, D) (F)$$

• SIMILARLY, WE DETERMINE $P_4 = (A, C) (E) (B, D) (F)$

BECAUSE $P_4 = P_3$ THIS IS ALSO THE EQUIVALENCE PARTITION P

THE MINIMAL SYSTEM:

PS	x = a	x = b	x = c
A	E, 0	B, 1	B, 0
B	F, 0	B, 0	A, 1
E	A, 0	F, 1	F, 0
F	B,0	A, 0	F, 1
		NS, z	

- THE STATE CODING IS CALLED *STATE ASSIGNMENT*
- CODING FUNCTIONS:

Input
$$C_I: I \to \{0,1\}^n$$

Output $C_O: O \to \{0,1\}^m$
State $C_S: S \to \{0,1\}^k$

Example 7.16

PS	x = a	x = b	x = c
A	E, 0	B, 1	B, 0
B	F, 0	B, 0	A, 1
E	A, 0	F, 1	F, 0
F	B, 0	A, 0	F, 1
		NS, z	

BINARY CODING

In	Input code Out		utput code		State	e assignment
x(t)	$x_1(t)x_0(t)$		z(t)]	s(t)	$s_1(t)s_0(t)$
a	00	0	0		A	00
b	01	1	1		B	01
с	10				E	10
					F	11

• THE RESULTING BINARY SPECIFICATION:

$s_1(t)s_0(t)$	$x_1 x_0 = 00$	$x_1 x_0 = 01$	$x_1 x_0 = 10$			
00	10, 0	01, 1	01, 0			
01	11, 0	01, 0	00, 1			
10	00, 0	11, 1	11, 0			
11	01, 0	00, 0	11, 1			
	$s_1(t+1)s_0(t+1)$, z					

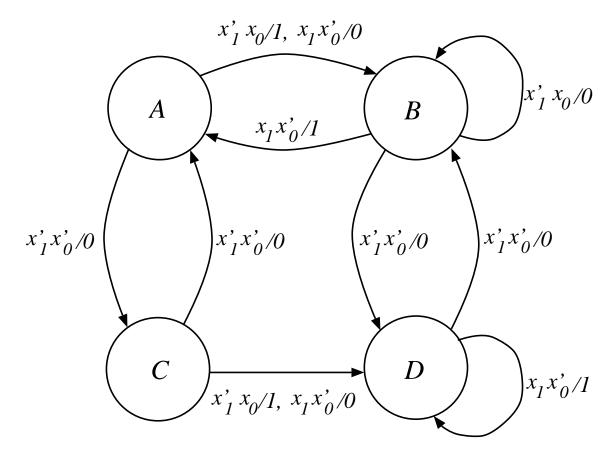


Figure 7.16: SWITCHING EXPRESSIONS AS ARC LABELS

MODULO-p COUNTER: 0, 1, 2, ..., p-1, 0, 1, ...

$$z(t) = \left[\sum_{i=0}^{t} x(i)\right] \mod p$$

$$s(t+1) = \left[s(t) + x(t)\right] \mod p$$

$$z(t) = s(t) \text{ (if same coding)}$$

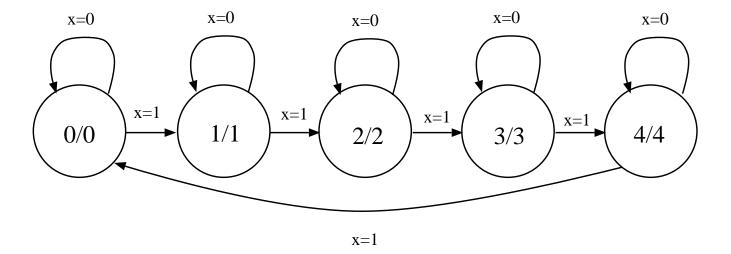


Figure 7.17: STATE DIAGRAM OF A MODULO-5 COUNTER

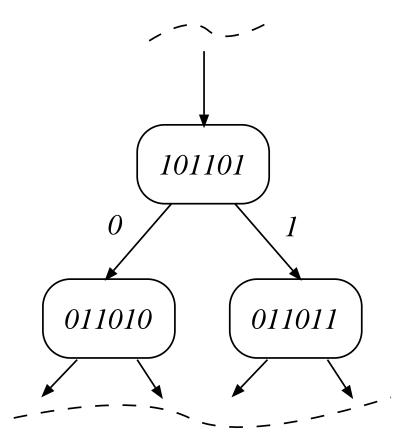


Figure 7.18: FRAGMENT OF STATE DIAGRAM OF PATTERN RECOGNIZER

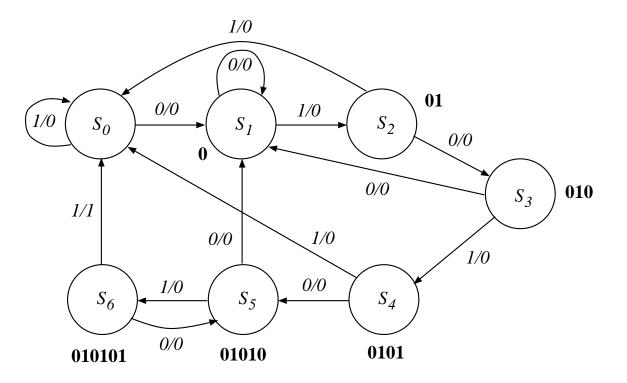


Figure 7.19: STATE DIAGRAM OF A PATTERN RECOGNIZER