
From Regular Expressions to DFA's Using
Compressed NFA's

by

Chia-Hsiang Chang

A dissertation submitted in partial ful�llment

of the requirements for the degree of

Doctor of Philosophy

Computer Science Department

Courant Institute of Mathematical Sciences

New York University

October, 1992

Approved: Robert A. Paige

i

To my parents and uncle Frank

ii

ACKNOWLEDGMENTS

I would like to express the greatest gratitude to my advisor Professor

Robert A. Paige for his encouragement and patience with me through all

these years. During these long years of my study, Professor Paige guidedmy

research direction, contributed with fresh ideas and solutions, and helped

to improve the presentation of the material. I thank Professor Chee. K.

Yap and Professor Jiazhen Cai for many fruitful discussions. I also thank

Dr. Janming Ho for his encouragement. Finally, I thank my wife Amy for

her long time support; without her, this thesis would have been impossible.

iii

Contents

1 Introduction 1

1.1 Terminology : 5

1.2 Background and Related Work : : : : : : : : : : : : : : : : 8

1.2.1 From Regular Expressions to NFA's : : : : : : : : : 9

1.2.2 From NFA's to DFA's : : : : : : : : : : : : : : : : : 15

1.2.3 An NFA/DFA hybrid machine : : : : : : : : : : : : 16

2 McNaughton and Yamada's NFA 17

2.1 A Space E�cient Parsing Algorithm for Regular Expressions 18

2.2 McNaughton and Yamada's NFA Reformulation : : : : : : 28

2.3 Faster NFA Construction : : : : : : : : : : : : : : : : : : : 34

3 The Compressed NNFA 40

3.1 Improving Space for McNaughton and Yamada's NFA : : : 40

3.2 Optimizing the CNNFA : 49

CONTENTS iv

4 Analysis of the CNNFA 59

4.1 Crossing Edges : 59

4.1.1 The Relaxed CNNFA : : : : : : : : : : : : : : : : : 60

4.1.2 Counting Crossing Edges : : : : : : : : : : : : : : : 69

4.2 CNNFA state complexity : : : : : : : : : : : : : : : : : : : 78

4.3 CNNFA vs. Thompson's NFA : : : : : : : : : : : : : : : : : 86

5 Performance Benchmark 95

5.1 CNNFA Benchmark : 95

5.2 Cgrep Benchmark : 97

6 More Optimization Techniques 102

6.1 Tree Contraction : 102

6.2 A CNNFA/DFA Hybrid Machine : : : : : : : : : : : : : : : 103

6.3 Even smaller DFA construction : : : : : : : : : : : : : : : : 107

7 Conclusion 111

A The CNNFA Benchmark Data 115

A.1 NFA Acceptance Testing Benchmark Timing Data : : : : : 115

A.2 DFA Construction Benchmark Data : : : : : : : : : : : : : 117

A.2.1 DFA construction Time : : : : : : : : : : : : : : : : 117

A.2.2 Constructed DFA Size : : : : : : : : : : : : : : : : : 120

CONTENTS v

B Cgrep Source Code 133

B.1 Implemetation Note : 134

B.2 cgrep program listing : 134

B.2.1 cnfa.h : 134

B.2.2
y.h : 140

B.2.3 timer.h : 142

B.2.4 cgrep.c : 143

B.2.5 parse.c : 152

B.2.6
y.c : 162

B.2.7 nfa2dfa.c : 171

B.2.8 pack.c : 179

B.2.9 path.c : 187

B.2.10 uty.c : 200

C cgrep Benchmark Raw Timing Data 217

vi

List of Figures

1.1 Thompson's NFA equivalent to (ajb)�abbb : : : : : : : : : : 12

1.2 McNaughton and Yamada's NFA equivalent to (ajb)�abbb : 13

1.3 Rabin and Scott's subset construction : : : : : : : : : : : : 15

2.1 Block Structure Organization : : : : : : : : : : : : : : : : : 24

2.2 An MYNNFA equivalent to regular expression (ajb)�abb : : 29

2.3 The tail of an MYNNFA equivalent to regular expression

(ajb)�abb : 29

2.4 Tail machine construction. : : : : : : : : : : : : : : : : : : 33

3.1 The CNNFA organization. : : : : : : : : : : : : : : : : : : 43

3.2 Another View of the CNNFA organization. : : : : : : : : : 44

3.3 A CNNFA equivalent to regular expression (ajb)�abb : : : : 44

3.4 To compute �(V; a) in a CNNFA : : : : : : : : : : : : : : : 47

3.5 F-set promotion : 50

3.6 I-set promotion : 50

LIST OF FIGURES vii

3.7 I-set promotion applied to edges attached to internal F-set

node v : 52

3.8 A CNNFA equivalent to ((a1j�)(� � � ((as�1j�)(asj�)�)� � � �)�)�

without optimization. : 53

3.9 A CNNFA equivalent to ((a1j�)(� � � ((as�1j�)(asj�)�)� � � �)�)�

resulting from Packing. : 54

3.10 Linking edges in the CNNFA for (abjcjd)� : : : : : : : : : : 56

3.11 A CNNFA equivalent to ((a1j�)(� � � ((as�1j�)(asj�)�)� � � �)�)�

resulting from packing and path compression. : : : : : : : 57

3.12 A CNNFA equivalent to (ajb)�abb : : : : : : : : : : : : : : : 58

4.1 To derive [F(JjK)�; I(JjK)�] in the CNNFA for (J jK)�. : : : : 61

4.2 Edge Packing in cnnfa 0J�K : : : : : : : : : : : : : : : : : : : 66

4.3 Edge Packing in cnnfa 0JK� : : : : : : : : : : : : : : : : : : : 67

4.4 Patterns of doubly charged node : : : : : : : : : : : : : : : 71

4.5 The CNNFA for ((� � � ((a1j�)(a2j�)) � � �)(asj�)) : : : : : : : : 73

4.6 No doubly charged node in the right path : : : : : : : : : : 74

4.7 The CNNFA for (a�1b
�
1) � � � (a

�
sb

�
s). : : : : : : : : : : : : : : : 77

4.8 Non-null Path : 83

4.9 The CNNFA for ((a�1b
�
1) � � � (a

�
sb
�
s))c. : : : : : : : : : : : : : : 85

5.1 The CNNFA acceptance testing speedup ratio : : : : : : : : 96

5.2 The CNNFA subset construction speedup ratio : : : : : : : 98

LIST OF FIGURES viii

5.3 DFA size improvement ratio starting from the CNNFA : : : 99

5.4 Egreps Benchmark Summary : : : : : : : : : : : : : : : : : 101

6.1 Tree contraction : 103

6.2 An CNNFA equivalent to regular expression (ajb)�abb im-

proved by tree contraction : : : : : : : : : : : : : : : : : : : 104

6.3 A k = 3 partition of TR for R = ((ajb)�c)((dje)�(f jg)�). : : : 105

6.4 A partition of cnnfa 0�R for R = ((ajb)�c)((dje)�(f jg)�). : : : 106

6.5 DFA's equivalent to (a(bjc)�)� : : : : : : : : : : : : : : : : : 108

6.6 Space saving subset construction for the CNNFA : : : : : : 110

ix

List of Tables

2.1 Reduction Rules used in step 2 : : : : : : : : : : : : : : : : 25

1

Chapter 1

Introduction

The growing importance of regular languages and their associated compu-

tational problems in languages and compilers is underscored by the grant-

ing of the Turing Award to Rabin and Scott in 1976, in part, for their

ground breaking logical and algorithmic work in regular languages [25]. Of

special signi�cance was their construction of the canonical minimum state

DFA that had been described nonconstructively in the proof of the Myhill-

Nerode Theorem[20,21]. Rabin and Scott's work, which was motivated by

theoretical considerations, has gained in importance as the number of prac-

tical applications has grown. In particular, the construction of �nite au-

tomata from regular expressions is of central importance to the compilation

of communicating processes[4], string pattern matching[3,19], approximate

string pattern matching[32], model checking[10], lexical scanning[2], and

VLSI layout design[31]; unit-time incremental acceptance testing in a DFA

CHAPTER 1. INTRODUCTION 2

is also a crucial step in LRk parsing[17]; algorithms for acceptance test-

ing and DFA construction from regular expressions are implemented in the

UNIX operating system[26].

Throughout this thesis our model of computation is a uniform cost

sequential RAM [1]. We report the following six results.

1. Berry and Sethi[5] use results of Brzozowski[8] to formally derive and

improve McNaughton and Yamada's algorithm[18] for turning regu-

lar expressions into NFA's. NFA's produced by this algorithm have

fewer states than NFA's produced by Thompson's algorithm[30], and

are believed to outperform Thompson's NFA's for acceptance test-

ing. Berry and Sethi's algorithm has two passes and can easily be

implemented to run in time �(m) and auxiliary space �(r), where r

is the length of the regular expression, and m is the number of edges

in the NFA produced. More recently, Br�uggemann-Klein[6] presents

a two-pass algorithm to compute McNaughton and Yamada's NFA

using the same resource bounds as Berry and Sethi. We present an

algorithm that computes the same NFA in the same asymptotic time

�(m) as Berry and Sethi, but it improves the auxiliary space to �(s),

where s is the number of occurrences of alphabet symbols appearing

in the regular expression.

2. One disadvantage of McNaughton and Yamada's NFA is that its worst

CHAPTER 1. INTRODUCTION 3

case number of edges ism = �(s2). If s() is the number of occurrences

of parentheses (right or left), then Thompson's NFA only has between

r � s() + 1 and 2r states and between r � s() and 4r � 3 edges. We

introduce a new compressed data structure, called the CNNFA, that

uses only �(s) space to represent McNaughton and Yamada's NFA.

The CNNFA can be constructed from a regular expression R in �(r)

time and O(s) auxiliary space.

3. Our main theoretical result is a proof that the CNNFA can be used

to compute the set of states U one edge away from an arbitrary set of

states V in McNaughton and Yamada's NFA in optimal time O(jV j+

jU j). The previous best worst-case time is O(jV j � jU j). This is the

essential idea that explains the superior performance of the CNNFA

in both acceptance testing and DFA construction.

4. For regular expression R with s alphabet symbol occurrence, the CN-

NFAMR has no more than 5s=2 states and (10s�5)=2 edges. CNNFA

MR has no more states or edges than Thompson's machine for R.

5. We give empirical evidence that our algorithm for NFA acceptance

testing using the CNNFA outperforms competing algorithms using ei-

ther Thompson's or McNaughton and Yamada's NFA. We give more

dramatic empirical evidence that constructing a DFA from the CN-

NFA can be achieved in time one order of magnitude faster than the

CHAPTER 1. INTRODUCTION 4

classical Rabin and Scott subset construction (cf. Chapter 3 of [2])

starting from either Thompson's NFA or McNaughton and Yamada's

NFA. Our benchmarks also indicate better performance using Thomp-

son's NFA over McNaughton and Yamada's NFA for acceptance test-

ing and subset construction. This observation runs counter to the

judgment of those using McNaughton and Yamada's NFA through-

out UNIX.

6. A UNIX egrep compatible software called cgrep based on the CNNFA

is implemented. Our benchmark shows that cgrep is signi�cantly

faster than both UNIX egrep and GNU e?grep, which are two popular

egrep implementations currently in use.

The next section presents standard terminology and background mate-

rial. In Chapter 2, we reformulate McNaughton and Yamada's algorithm

from an automata theoretic point of view, and describe a new algorithm

to turn regular expressions into McNaughton and Yamada's NFA's. In

Chapter 3 we show how to construct and optimize the CNNFA. Analysis

of the CNNFA is presented in Chapter 4. Chapter 5 discusses experimen-

tal results showing how the CNNFA compares with other NFA's in solving

acceptance testing and DFA construction. The benchmark result for cgrep

and competing softwares is also in Chapter 5. Chapter 6 mentions more

optimization tactics. In Chapter 7, we summarize our results and present

CHAPTER 1. INTRODUCTION 5

future research directions.

1.1 Terminology

With few exceptions the following basic de�nitions and terminology can be

found in [2,14]. By an alphabet we mean a �nite nonempty set of symbols.

If � is an alphabet, then �� denotes the set of all �nite strings of symbols

in �. The empty string is denoted by �. If x and y are two strings, then

xy denotes the concatenation of x and y. Any subset of �� is a language

over �.

De�nition 1.1 Let L;L1; L2 be languages over �. The following expres-

sions can be used to de�ne new languages.

� ; denotes the empty set

� L1L2 = fxy : x 2 L1; y 2 L2g denotes product

� L0 = f�g if L 6= ;; ;0 = ;

� Li+1 = LLi, where i � 0

� L� = [1i=0L
i

� LT = fx : ax 2 Lja 2 �g denotes the tail of L

In later discussions we will make use of the identities below, which follow

directly from the preceding de�nition.

L f�g = f�gL = L (1.1)

CHAPTER 1. INTRODUCTION 6

L ; = ;L = ; (1.2)

(L1 [L2)
T = LT

1 [LT
2 (1.3)

(L1L2)
T = LT

1L2 if � 62 L1; otherwise; (L1L2)
T = LT

1L2 [LT
2 (1.4)

(L�)T = LTL� (1.5)

Kleene [16] characterized a subclass of languages called regular languages

in terms of regular expressions.

De�nition 1.2 The regular expressions over alphabet � and the languages

they denote are de�ned inductively as follows.

� ; is a regular expression that denotes the empty set

� � is a regular expression that denotes set f�g

� a is a regular expression that denotes fag, where a 2 �

If J and K are regular expressions that represent languages LJ and LK,

then the following are also regular expressions:

� J jK (alternation) represents LJ [LK

� JK (product) represents LJLK

� J� (star) represents [1i=0L
i
J

By convention star has higher precedence than product, which has higher

precedence than alternation. Both product and alternation are left associa-

tive. Parentheses are used to override precedence. Two regular expressions

CHAPTER 1. INTRODUCTION 7

are equal if they are, syntactically, the same; two regular expressions are

equivalent if they denote the same language. The length of regular expres-

sion R is the number of symbol occurrences in R including �, alphabet

symbols, parentheses, star, and alternation operator. Since product op-

erators are implicit, product operators are not counted in calculating the

length of regular expressions. Regular expression ((abjcd��))� is of length

12. Without loss of generality, we will assume throughout this thesis that

regular expressions have no occurrences of ;.

Regular expressions have been used in a variety of practical applications

to specify regular languages in a perspicuous way. The problem of deciding

whether a given string belongs to the language denoted by a particular

regular expression can be implemented e�ciently using �nite automata

de�ned below.

De�nition 1.3 A nondeterministic finite automata (abbr. NFA) M is

a 5-tuple (�; Q; I; F; �), where � is an alphabet, Q is a set of states, I � Q

is a set of initial states, F � Q is a set of �nal states, and � � Q� (��Q)

is a state transition map. It is useful to view NFA M as a labeled directed

graph with states as vertices and an edge labeled a connecting state q to

state p for every pair [q,[a; p]] belonging to �. For all q 2 Q and a 2 � we

use the notation �(q; a) to denote the set fp : [q; [a; p]] 2 �g of all states

reachable from state q by a single edge labeled a.

CHAPTER 1. INTRODUCTION 8

It is helpful to extend the notation for transition map � in the following

way. If q 2 Q, V � Q, a 2 �, x 2 ��, and B � ��, then we de�ne

�(q; �) = fqg,

�(q; ax) = �(�(q; a); x),

�(V; x) = [q2V �(q; x),

�(V;B) = [b2B�(V; b).

The language accepted byM , denoted by LM , is de�ned by the rule, x 2 LM

if and only if �(I; x)\F 6= ;. In other words, LM = fx 2 ��j�(I; x)\F 6= ;g.

NFA M is a deterministic finite automata (abbr. DFA) if transition map

� has no more than one edge with the same label leading out from each

state, and if I contains exactly one state. Two NFA's are equivalent if they

accept the same language.

1.2 Background and Related Work

Kleene also characterized the regular languages in terms of languages ac-

cepted by DFA's. Rabin and Scott [25] showed that NFA's also characterize

the regular languages, and their work led to algorithms to decide whether

an arbitrary string is accepted by an NFA.

Let n be the number of NFA states, m be the number of edges, and

k be the alphabet size. For an NFA represented by an adjacency matrix

of size n2 for each alphabet symbol, acceptance testing takes O(njxj) bit

CHAPTER 1. INTRODUCTION 9

vector operations and O(n) auxiliary space. Alternatively, for an NFA

implemented by an adjacency list of size m with a perfect hash table [11]

storing the alphabet symbols at each state, this test takes time proportional

to mjxj in the worst case. For DFA's the same data structure leads to

a better time bound of �(jxj). However, there are NFA's for which the

smallest equivalent DFA (unique up to isomorphism of state labels as shown

by Myhill [20] and Nerode [21]) has an exponentially greater number of

states. Thus, the choice between using an NFA or DFA is a space/time

tradeo�.

1.2.1 From Regular Expressions to NFA's

There are two main approaches for turning regular expressions into equiv-

alent NFA's. One is due to Thompson [30], and the other one is due to

McNaughton and Yamada[18].

De�nition 1.4 A �-NFA M is a 5-tuple (�; Q; I; F; �). �-NFA M is an

NFA except that state transition map � � Q � ((� [f�g) � Q). Let V

be a set of �-NFA states. The �-closure of V , denoted by ��closure(V),

is the smallest set of states V 0 such that V � V 0 and V 0 = V 0 [fy : x 2

V 0; [x; [�; y]] 2 �g. If q 2 Q, V � Q, a 2 �, x 2 ��, and B � ��, then we

de�ne

�(q; �) = ��closure(fqg),

�(q; a) = fp : q0 2 ��closure(fqg); [q0; [a; p]] 2 �g,

CHAPTER 1. INTRODUCTION 10

�(q; ax) = �(�(q; a); x), for x 6= �,

�(V; x) = [q2V �(q; x),

�(V;B) = [b2B�(V; b).

A string x 2 LM if and only if ��closure(�(I; x)) \ F 6= ;.

Thompson's construction is a simple, bottom-up method that processes

the regular expression and construct �-NFA's as it is parsed. For regular

expression R, the rules for constructing Thompson's NFA MR that accepts

LR are as follows: There are exactly one initial and one �nal state in

Thompson's NFAMR. If the regular expression is � or an alphabet symbol,

say a, then Thompson's algorithm constructs an equivalent NFA as follows,

where state labeled q0 is the initial state, and double circled state the

�nal state. The number of states in Ma state count(Ma) = 2, and NFA

Ma has edge count(Ma) = 1 edge. For Thompson's NFA M�, we have

state count(M�) = 2 and edge count(M�) = 1.

q0
a

q0
λ

If regular expression R = J jK, then an equivalent NFA MR can be con-

structed from MJ and MK . Thompson's NFA MJjK has state count(MJ)

+ state count(MK) + 2 states and edge count(MJ) + edge count(MK) +

4 edges.

CHAPTER 1. INTRODUCTION 11

q0

M J

M K

λ

λλ

λ

If regular expression R = JK, then NFA MR denoting LR is constructed as

follows. Thompson's NFA MJK has state count(MJ) + state count(MK) -

1 states and edge count(MJ) + edge count(MK) edges.

q0 M J M K

If regular expression R = J�, then NFA MR is constructed from MJ by

adding two states and four edges toMJ . Thompson's NFA MJ� has exactly

state count(MJ) + 2 states and edge count(MJ) + 4 edges.

q0 M J

λ λ

λ

λ

Let s�; s�; sj; s:; s� and s() be the number of occurrences of alphabet sym-

bols, �, alteration operator, product operation, star operator, and paren-

CHAPTER 1. INTRODUCTION 12

q 0
λ

λ λ

λ

λ

λ

λ λ bba

b

a

Figure 1.1: Thompson's NFA equivalent to (ajb)�abbb

theses in regular expression R. The length of R is r = s�+s�+sj+s�+s().

Moreover, the number of states and edges of Thompson's NFA MR are

bounded by

r � s() + 1 � state count(MR) = 2(s� + s� + sj + s�) � s: � 2r,

r � s() � edge count(MR) = s� + s� + 4(sj + s�) � 4r � 3.

The indegree and the outdegree of any state in Thompson's NFA MR is

no greater than 2. If a state is the tail of an edge labeled by an alphabet

symbol in MR, then the indegree of this state is one. The time and space

for Thompson's algorithm is linear in r. The NFA equivalent to (ajb)�abb

constructed by Thompson's algorithm is shown in Fig. 1.1.

Another approach is based on Berry and Sethi's [5] improvement to Mc-

Naughton and Yamada [18]. In addition to an initial state, McNaughton

CHAPTER 1. INTRODUCTION 13

a(| b) a b b*
b

ba

a

a

b
ba

a

a
b

q0

Figure 1.2: McNaughton and Yamada's NFA equivalent to (ajb)�abbb

and Yamada's NFA has a distinct state for every alphabet symbol occur-

rence in the regular expression. All the edges in McNaughton and Yamada's

machine are labeled by alphabet symbols; all the incoming edges of each

state are labeled by the same symbol.

We shall discuss McNaughton and Yamada's NFA in the next Chapter.

However, it su�ces to say at this point that McNaughton and Yamada's ma-

chines can also be viewed as NFA's transformed from Thompson's NFA's.

The initial state and states that are tails of edges labeled by alphabet

symbols in Thompson's NFA are called transition states. These states cor-

respond to states in McNaughton and Yamada's NFA (e.g. shaded nodes in

Fig. 1.1). Let q1; q2 be states in a McNaughton and Yamada's NFA. There

is a path from transition state q1 to transition state q2 in a Thompson's

Machine spelling a if and only if there is an edge labeled a from q1 to q2

in McNaughton and Yamada's corresponding machine. McNaughton and

Yamada's corresponding NFA for (ajb)�abb is shown in Fig. 1.2.

CHAPTER 1. INTRODUCTION 14

Berry and Sethi construct an NFA in which the number of states n is

precisely one plus the number s of occurrences of alphabet symbols appear-

ing in the regular expression. In general, s can be arbitrarily smaller than

r. However, the number of edges in McNaughton and Yamada's NFA is

m =
(s2) in the worst case, which can be one order of magnitude larger

than the bound for Thompson's NFA. Berry and Sethi's construction scans

the regular expression twice, and, with only a little e�ort, both passes can

be made to run in linear time and auxiliary space with respect to r plus the

size of the NFA. More recently, Br�uggemann-Klein[6] presents a two-pass

algorithm to compute McNaughton and Yamada's NFA using the same

resource bounds as Berry and Sethi.

For the bit matrix representation, McNaughton and Yamada's NFA

can be used to solve acceptance testing using O(sjxj) bit vector opera-

tions, which is superior to the time bound for Thompson's NFA. With the

adjacency list representation the worst case number of edges m =
(s2)

leads to a worst case time bound �(mjxj) which is one order of magnitude

worse than the time bound for Thompson's machine. However, the fact

that McNaughton and Yamada's NFA is a DFA when all of the alphabet

symbols are distinct may explain, in part, why it is observed to outperform

Thompson's NFA for a large subclass of the instances. Berry and Sethi's

construction scans the regular expression twice, and, with only a little ef-

fort, both passes can be made to run in linear time and auxiliary space with

CHAPTER 1. INTRODUCTION 15

� := ;
workset := f�-closure(fq0g)g
while 9V 2 workset do

workset := workset - fV g
for each symbol a 2 � and set of states B = fx 2 �(V;�)jA(x) = ag,

where B 6= ; do
B := �-closure(B)
�(V; a) := B
if B does not belong to the domain of � or to workset then

workset := workset [fBg
end if

end for
end while

Figure 1.3: Rabin and Scott's subset construction

respect to r plus the size of the NFA (for either adjacency list or matrix

implementations).

1.2.2 From NFA's to DFA's

There is one main approach for turning NFA's (constructed by either of

the two methods above) into DFA's. This is by Rabin and Scott's subset

construction[25]. A high level speci�cation of Rabin and Scott's classical

subset construction for producing a DFA � from an NFA � is given in

Fig. 1.3. The �-closure is a means to produce smaller DFA's. The �-

closure step is often omitted when we construct DFA's from McNaughton

and Yamada's NFA's because McNaughton and Yamada's NFA does not

CHAPTER 1. INTRODUCTION 16

have �-edges. There is a heuristic, similar to �-closure, being proposed (see

pp. 141 in [2]) for McNaughton and Yamada's NFA to reduce the size of

DFA's.

1.2.3 An NFA/DFA hybrid machine

Recently, Meyer [19] gave an O(jxjjRj= log jxj) space and time acceptance

testing algorithm for regular expression R and string x. He makes use of

node listing and the \four Russians" trick to devise an O(log jxj)-fold speed

up algorithm. Basically, his machine is a hybrid of NFA and DFA. More

precisely, he divides a Thompson's NFA into O(jRj= log jxj) modules, and

each module is replaced by a DFA. Using a bit-vector model of complexity,

his algorithm runs in O(jxjjRj= log jxj) time and space. In practice, his

algorithm, which is based on bit-vector operation, is fast for small regular

expressions [19].

17

Chapter 2

McNaughton and Yamada's

NFA

In this Chapter we give a one-pass algorithm to construct McNaughton and

Yamada's NFA M from a regular expression in linear time with respect to

the size of M . We present a space e�cient parsing algorithm for regular

expressions so that our construction algorithm uses only O(s) auxiliary

space, where s is the number of alphabet symbol occurrences in the regular

expression. Recall that s can be arbitrarily smaller than the length of

regular expression. The previous best algorithms [5,6] are linear time, but

they use two passes and O(jRj) auxiliary space.

CHAPTER 2. MCNAUGHTON AND YAMADA'S NFA 18

2.1 A Space E�cient Parsing Algorithm for

Regular Expressions

For any regular expression R, there are equivalent regular expressions that

are arbitrarily longer than R. A regular expression is equivalent to the

empty string � if and only if it contains no alphabet symbol occurrences.

For convenience, we call a regular expression a �-expression if it is equivalent

to the empty string �. We can concatenate a regular expression with a

�-expression and preserve its meaning. If � 2 LR, then Rj� � Rj� � R. We

can enclose a regular expression by a pair of parentheses without changing

the language it denotes. For regular expression R, all the popular parsing

algorithms (for example, LR or LL parsers) take O(jRj) time and space

(both output and auxiliary space). We give an algorithm to parse R in

O(jRj) time and O(s + log jRj) auxiliary space, where s is the number of

alphabet symbol occurrences in R. Using a conventional assumption that

each memory word has O(log jRj) bits, our algorithm uses O(s) space.

Lemma 2.1 Let R be a regular expression with s occurrences of alphabet

symbols. There is an O(s) long regular expression R0 equivalent to R. [7]

Proof: Suppose we augment a regular expression R by adding a � on

top of R, enclosing R by a pair of parentheses, concatenating R with a

�-expression, adding a �-expression as an alternative for R, or applying an

arbitrary number of operations previously stated. An augmented regular

CHAPTER 2. MCNAUGHTON AND YAMADA'S NFA 19

expression R0 of R denotes one of the languages of LR, L(R)j� or L(R)�.

By an inductive argument, we show that for any regular expression R

with s > 0 alphabet symbol occurrences, there is a regular expression R0 of

length at most 14(s� 1) +5 equivalent to R. For any regular expression R

containing one alphabet symbol occurrence a, R denotes one of La; Laj� or

La�. Let R be JK or J jK, where J andK are regular expressions containing

sJ and sK, sJ ; sK > 0, alphabet symbol occurrences respectively. By the

induction hypothesis, there exist J 0 and K 0 which are equivalent to J and

K respectively, and the length of J 0 and K 0 is at most 14(sJ � 1) + 5

and 14(sK � 1) + 5 respectively. Therefore, either (J 0)j(K 0) or (J 0)(K 0) is

equivalent to R, and it is at most 14(s� 1)+ 1 long. Consider that regular

expression R contains s > 1 occurrences of alphabet symbols, and R1 is

the smallest subexpression of R containing s alphabet symbol occurrences.

There must be a 14(s� 1)+ 1 long regular expression R0
1 equivalent to R1.

Therefore, there is a 14(s� 1) + 5 long regular expression equivalent to R.

ut

Lemma 2.1, by a non-constructive approach, shows that there exists an

O(s) long equivalent regular expression R0 of regular expression R with s

alphabet symbol occurrences. If we can transform R into R0 in O(jRj) time

using O(s) auxiliary space, then we can \parse" R using the same time and

space bounds.

We can always transformR into an O(s) long equivalent regular expres-

CHAPTER 2. MCNAUGHTON AND YAMADA'S NFA 20

sion by applying the following simpli�cation rules [7]:

�� = � (2.1)

R� = �R = R (2.2)

Rj� = �jR = R; where � 2 LR (2.3)

R�� = (R�)� = R� (2.4)

((R)) = (R) (2.5)

However, in order to apply these simpli�cation rules, we need to parse R

�rst. There is work to be done to achieve our goal.

All the popular parsing algorithms cannot parse regular expressions

with s alphabet symbol occurrences using only O(s) auxiliary space. In

illustration, let us consider the following examples. There could be an

arbitrary number of *" on top of regular expression, but we can incorporate

rule (2.4) in a parser to solve this problem. We can also incorporate rule

(2.2) and (2.3) in a parser to eliminate most of the redundant �'s so that

a parser hopefully uses no more than O(s) auxiliary space. However, to

e�ciently handle parentheses is a problem hard to overcome.

We can enclose a regular expression by an arbitrary number of pairs

of parentheses without changing its meaning. Consider regular expression

R = (� � � (a) � � �) which has k pairs of parentheses. An LR parser keeps

up to k left parentheses in the stack before R is completely parsed. One

quick heuristic to reduce auxiliary space is that instead of keeping every

CHAPTER 2. MCNAUGHTON AND YAMADA'S NFA 21

left parenthesis in the stack, we keep track only the number of consecutive

left parentheses. However, this heuristic does not work. Regular expres-

sions R and (�j(R)) denote di�erent languages if � 62 LR. The action to

be taken after scanning k consecutive left parentheses is di�erent from the

one after scanning a sequence \(� � � (�j � � � (�j � � �", which also contains k left

parentheses. Therefore, we cannot use an O(log jRj)-bit counter to encode

this sequence. Moreover, we cannot perform a reduction immediately even

when we know it is possible because there could be an arbitrary number

of �-expressions spread in a regular expression with s alphabet symbol oc-

currences. An eager reduction strategy for �-expressions would result in

an O(jRj) auxiliary space bounded parsing algorithm. We shall make use

of special properties of regular expressions to develop a variant of opera-

tor precedence parsing. Our algorithm constructs an O(s) long equivalent

expression of R in O(jRj) time and using only O(s) auxiliary space.

We �rst consider the following simpler cases.

�-expressions: Let us consider an expressionR containing no alphabet

symbol occurrences �rst. Since a regular expression containing no alphabet

symbol occurrences is equivalent to �, we can transform R to � if R is

a valid regular expression. We use a counter to decide whether or not

the parentheses in R is balanced. In O(jRj) time and using O(log jRj)-bit

auxiliary space, we can decide the validity of expression R.

conjunct reduction: Now we consider an expression R of the form

CHAPTER 2. MCNAUGHTON AND YAMADA'S NFA 22

(J1)(J2) � � � (Jk). Let K1;K2; . . . ;Kt be all the top-level subexpressions

(i.e. each Ki = (Jl), for some l) which contain alphabet symbol oc-

currences. Assume that K1;K2; � � � and Kt are valid, been parsed, and

they are represented as atoms (pointers pointing to subexpressions). Then

R � K1K2 � � �Kt if R is valid. Following the argument used in the pre-

vious paragraph, we can transform R (including validity checking) into

K1K2 � � �Kt in O(l + t) time and O(log jRj)-bit auxiliary space, where l

is the sum of the length of all the Ji's, 1 � i � k, which do not contain

alphabet symbol occurrences.

disjunct reduction: Consider the case that expression R is of the

form (J1)j � � � j(Jk). Let K1;K2; . . . ;Kt be all the top-level subexpressions

which contain alphabet symbol occurrences. As before, we assume that

K1;K2; . . .Kt are valid, been parsed, and they are represented as atoms.

Suppose that R is a valid regular expression. If all the Ji's, 1 � i � k,

are not �-expressions, or if there is a Ki, 1 � i � t, such that Ki accepts

the empty string �, then we transform R into an equivalent regular expres-

sion K1jK2j � � � jKt; otherwise, we transform R into �jK1jK2j � � � jKt. This

transformation (including validity checking) can be done in O(l + t) time

and using O(log jRj)-bit auxiliary space, where l has the same de�nition as

before.

We shall describe our algorithm as follows. We assume that the input

expression is stored in an array or a doubly linked list. Because of O(s)

CHAPTER 2. MCNAUGHTON AND YAMADA'S NFA 23

auxiliary space restriction, we cannot a�ord to store all the parsing ingre-

dients in the auxiliary space (as what LRk or recursive-descendent parser

does). In particular, we need a special mechanism to store \(", \)", � and

their related operators. Conceptually, we divide expression R into up to s

basic blocks and s+ 1 non-basic blocks. A basic block is a valid subexpres-

sion of R that contains at least one alphabet symbol occurrence. Non-basic

blocks are regions of expression R separated out by basic blocks. Each of

basic and non-basic blocks has two pointers pointing to the leftmost and

rightmost symbols of the subexpression it represents. Every basic block Bi

with k alphabet symbol occurrences is attached to an O(k) long equivalent

regular expression ri. In addition, two
ags null and star are attached to

every basic block. The
ag null in a basic block is true if and only if this

basic block accepts the empty string. We use
ag star to indicate whether

or not there is a *" on top of the equivalent regular expression attached to

this block. Basic blocks and non-basic blocks are doubly linked, and named

b1; B1; b2; B2; . . . ; bs+1 according to their left/right appearances in R. The

essential idea of our algorithm is to perform reductions around basic blocks

as many time as possible, and only around basic blocks, to avoid harmful

reductions. so as not to blow up the O(s) auxiliary space bound constraint.

Initially, there is no basic or non-basic block being built. Without loss of

generality, we assume that R contains at least one alphabet symbol occur-

rence, R is universally parenthesized, and block pointers are updated when

CHAPTER 2. MCNAUGHTON AND YAMADA'S NFA 24

r1 r
2

B1 B2b2b1

non-basic block basic block basic blocknon-basic block

Figure 2.1: Block Structure Organization

it is obvious.

step 1: In this step, we construct a new basic and a new non-basic

block whenever there is nothing obvious to do. Initially, we scan the �rst

(leftmost) symbol of R. We scan R rightward until an alphabet symbol or

a right parenthesis, of which the matching left parenthesis is to the left of

the starting scanning position, is encountered. If such a right parenthesis is

found, then we perform step 5. If an alphabet symbol, say a, is encountered,

then we construct a non-basic block b to cover the region recently scanned

(excluding a), and create a new basic block B to cover a. The equivalent

regular expression attached to B is a. Both null and star
ag of B have

value false. Then, we perform step 2. Consider the case that we reach the

end of R. If there is only one basic block covering the entire R, then the

transformation is completed; otherwise, R is not a valid regular expression.

step 2: The goal of this step is to perform reductions around a basic

CHAPTER 2. MCNAUGHTON AND YAMADA'S NFA 25

left right action
don't care � if the star
ag of B is false, then the equivalent

regular expression of B become (r)�; otherwise,
we do nothing. The star and null
ags of B be-
come true.

: : perform step 3

: j perform step 3

:) perform step 3

j j perform step 4

j) perform step 4

() do nothing

j : perform step 1

all other cases perform step 1

Table 2.1: Reduction Rules used in step 2

block. Let B be the basic block currently examined, and r be the equivalent

regular expression attached to B. We examine the left and right operators

around B, and perform reductions as many as possible according to rules

given in Table 2.1.

step 3: We scan R leftward from the rightmost position to the left of B

(we treat basic blocks as atomic elements) in order to �nd a maximal con-

junct (i.e. of the form J1J2 � � �JKB). If a right parenthesis is encountered,

we move our scanning position (and ignore the contents) to its matching

left parenthesis which must be in the same non-basic block. On the way

scanning leftward, if a \j" operator or a left parenthesis is encountered, then

we �nd a maximal conjunct which covers B (and up to B). We then create

an new basic block B0 to cover this conjunct. According to the transfor-

CHAPTER 2. MCNAUGHTON AND YAMADA'S NFA 26

mation previously described, we construct an equivalent regular expression

for B0, delete/modify those blocks which have non-empty overlapping with

B0, maintain block structure, and update star and null
ag in B0. This

step takes O(l + k) time and O(log jRj)-bit auxiliary space, where l is the

number of symbols scanned in non-basic blocks, and k is the number of

basic blocks covered by B0.

step 4: Similar to step 3, we scan R leftward from the rightmost po-

sition to the left of B (treat basic blocks as atomic elements as before) in

order to �nd a maximal sequence of conjuncts connected by \j". Similar to

step 3, we simply scan R leftward until a left parenthesis which its matching

right parenthesis is to the right of B, is encounter. Similar to step 3, this

step takes O(l + k) time and O(log jRj)-bit auxiliary space, where k and l

is the same as we de�ne in step 3.

step 5: In this step,we reduce a subexpression enclosed by a pair of

parentheses. The method used in this step is the same as step 4. The time

and space complexities are the same as step 4.

For any regular expression R with s alphabet symbol occurrences, our

method transforms R into an O(s) long equivalent expression R0 in O(jRj)

time and O(s) auxiliary space. Our method uses O(s) auxiliary space

because at most 2s+ 1 basic and non-basic blocks are built. Since we scan

each symbol in R at most twice, our method takes O(jRj) time. Because

the transformations used in step 2, 3, 4 and 5 are correct, R0 is equivalent

CHAPTER 2. MCNAUGHTON AND YAMADA'S NFA 27

to R. Similar to Lemma 2.1, the length of R0 is O(s) bounded.

Without loss of generality, we assume, throughout this thesis, all the

regular expressions with s > 0 occurrences of alphabet symbols are of

length O(s).

CHAPTER 2. MCNAUGHTON AND YAMADA'S NFA 28

2.2 McNaughton and Yamada's NFA Refor-

mulation

It is convenient to reformulate McNaughton and Yamada's transformation

from regular expressions to NFA's[18] in the following way.

De�nition 2.2 A normal NFA (abbr. NNFA) is an NFA in which all edges

leading into the same state have the same label. Thus, it is convenient to

label states instead of edges, and we represent an NNFA M as a 6-tuple

(�; Q; �; I; F;A), where � is an alphabet, Q is a set of states, � � Q�Q is

a set of (unlabeled) edges, I � Q is a set of initial states, F � Q is a set of

�nal states, and A : Q ! � maps states x 2 Q into labels A(x) belonging

to alphabet �. The language LM accepted by NNFA M is the set of strings

x 2 �� formed from concatenating labels on all but the �rst state of a path

from a state in I to a state in F . A McNaughton/Yamada NNFA (abbr.

MYNNFA) is an NNFA with one initial state of zero in-degree (see Fig.

2.2).

We sometimes omit � in NNFA speci�cations when it is obvious. It is

useful (and completely harmless) to sometimes allow the label map A to be

unde�ned on states with zero in-degree. For example, we will not de�ne A

on the initial state of an MYNNFA.

De�nition 2.3 The tail of an MYNNFA M = (�; Q; �; I = fq0g; F;A) is

an NNFA MT = (�T ; QT ; �T ; IT ; F T ; AT), where �T = �, QT = Q � fq0g,

CHAPTER 2. MCNAUGHTON AND YAMADA'S NFA 29

a(| b) a b b*

I F

Figure 2.2: An MYNNFA equivalent to regular expression (ajb)�abb

a(| b) a b b*

I F
T T

Figure 2.3: The tail of an MYNNFA equivalent to regular expression
(ajb)�abb

�T = f[x; y] 2 �jx 6= q0g, IT = fy : [q0; y] 2 �g, F T = F�fq0g, and AT = A.

Fig. 2.3 shows the tail of the MYNNFA given in Fig. 2.2.

If MYNNFA M accepts language LM , then the identity LT
M = (LM)T

holds; that is, the language accepted by tail machine MT is the same as

the tail of the language accepted by M . However, given the tail of some

MYNNFA M , we cannot compute an MYNNFA equivalent to M without

also knowing whether � 2 LM . Let nullM = f�g if � 2 LM ; otherwise, let

nullM = ;. Now we can reconstruct an MYNNFA M = (�; Q; �; I; F;A)

CHAPTER 2. MCNAUGHTON AND YAMADA'S NFA 30

from its tailMT = (�T ; QT ; �T ; IT ; F T ; AT) and from nullM using the equa-

tions

� = �T ; Q = QT [fq0g; � = �T [f[q0; y] : y 2 ITg; I = fq0g;

F = F T [fq0gnullM; A = AT ; (2.6)

where q0 is a new state. Note that since nullM is either f�g or ;, and by

language operations de�ned previously, the expression fq0gnullM is fq0g if

nullM = f�g; otherwise, fq0gnullM = ;.

It is a desirable and obvious fact (which follows immediately from the

de�nition of an MYNNFA) that when A is one-to-one, then no state can

have more than one edge leading to states with the same label. Hence,

such an MYNNFA is a DFA. More generally, an MYNNFA is a DFA if and

only if the binary relation f[x; y] 2 �jA(y) = ag is single-valued for every

alphabet symbol a 2 �.

McNaughton and Yamada's algorithm take an input regular expression

R, and computes an MYNNFA M that accepts LR. Their algorithm can be

implemented within a left-to-right parse of R without actually producing a

parse tree. To explain how the construction is done, we use the notational

convention that MR denotes an MYNNFA equivalent to regular expression

R. Each time a subexpression J of R is reduced during parsing, nullJ and

MT
J are computed, where MJ is an MYNNFA equivalent to J . The last

step computes an MYNNFA MR from MT
R and nullR by equations (2.6).

CHAPTER 2. MCNAUGHTON AND YAMADA'S NFA 31

Theorem 2.4 (McNaughton and Yamada) Given any regular expression

R with s occurrences of alphabet symbols from �, an MYNNFA MR with

s+ 1 states can be constructed.

Proof: The proof uses structural induction to show that for any regular

expression R, we can always compute nullR and MT
R for some MYNNFA

MR. Then equations (2.6) can be used to obtain MR. We assume a �xed

alphabet �. There are two base cases, which are easily veri�ed.

MT
� = (QT

� = ;; �T� = ;; IT� = ;; F T
� = ;; AT

� = ;); null� = f�g (2.7)

MT
a = (QT

a = fqg; �Ta = ;; ITa = fqg; F T
a = fqg; AT

a = f[q; a]g);

nulla = ;; where a 2 �; and q is a distinct state (2.8)

To use induction, we assume that J and K are two arbitrary regular

expressions equivalent respectively to MYNNFA's MJ andMK with MT
J =

(QT
J ; I

T
J ; F

T
J ; �

T
J ; A

T
J) and MT

K = (QT
K ; I

T
K; F

T
K ; �

T
K ; A

T
K); where QT

J and QT
K

are disjoint. Then we can use (1.3), (1.4), and (1.5) to verify that

MT
JjK = (QT

JjK = QT
J [QT

K ; �
T
JjK = �TJ [�TK; I

T
J jK = ITJ [ITK;

F T
JjK = F T

J [F T
K ; A

T
J jK = AT

J [AT
K);

nullJjK = nullJ [nullK (2.9)

MT
JK = (QT

JK = QT
J [QT

K ; �
T
JK = �TJ [�TK [F T

J I
T
K;

ITJK = ITJ [nullJI
T
K; F

T
JK = F T

K [nullKF
T
J ;

CHAPTER 2. MCNAUGHTON AND YAMADA'S NFA 32

AT
JK = AT

J [AT
K); nullJK = nullJnullK (2.10)

MT
J� = (QT

J� = QT
J ; �

T
J� = �TJ [F T

J I
T
J ; I

T
J� = ITJ ; F

T
J� = F T

J ;

AT
J� = AT

J); nullJ� = f�g (2.11)

The preceding formulas are illustrated in Fig. 2.4.

Disjointness of the unions used to form the set of states for the cases

J jK and JK proves the assertion about the number of states. The validity

of the disjointness assumption follows from the fact that new states can

only be obtained from rule (2.8), and each new state is distinct. We can

convert MT
R into MR using equations (2.6). ut

The proof of Theorem 2.4 leads to McNaughton and Yamada's algo-

rithm. The construction of label function A shows that when all of the

occurrences of alphabet symbols appearing in the regular expression are

distinct, then A is one-to-one. In this case, a DFA would be produced.

Analysis determines that this algorithm falls short of optimal perfor-

mance, because the operation �TJ [F
T
J I

T
J within formula (2.11) forMT

J� is not

disjoint; all other unions are disjoint and can be implemented in unit time.

In particular, this overlapping union makes McNaughton and Yamada's al-

gorithm use timeO(s3) to transform regular expression ((a1j�)(� � � ((as�1j�)(asj�)�)� � � �)�)�

into an MYNNFA with s + 1 states and s2 edges.

This redundancy is made explicit in two examples. After two applica-

CHAPTER 2. MCNAUGHTON AND YAMADA'S NFA 33

I T
JK

FT
JK

I T
K

FT
J

MT
JK

F T
J

I T
J

FT
K

I T
K

MT
K

MT
J

I T
J|K

FT
J|K

I T
J

FT
J

I T
K

FT
K

MT
J

MT
K

MT
J|K

T
J *

I T
J *

F

I T
J

F T
J

MT
J *

FT
J I T

J

MT
J

Figure 2.4: Tail machine construction.

CHAPTER 2. MCNAUGHTON AND YAMADA'S NFA 34

tions of rule (2.11), we obtain the expansion

�TJ�� = �TJ� [F T
J�I

T
J�

= �TJ [F T
J I

T
J [F T

J I
T
J ;

in which that product F T
J I

T
J is redundant. If nullJ = nullK = f�g, then

application of rules (2.11) and (2.10) gives us the expansion

�T(JK)� = �TJK [F T
JKI

T
JK

= �TJ [�TK [F T
J I

T
K [(F T

J [F T
K)(I

T
J [ITK);

in which product F T
J I

T
K is redundant.

2.3 Faster NFA Construction

By recognizing the overlapping union �TJ [F T
J I

T
J within formula (2.11) for

MT
J� as the source of ine�ciency, we can maintain invariant nredJ = F T

J I
T
J �

�TJ in order to replace the overlapping union by the equivalent disjoint union

�TJ [nredJ . In order to maintain nredR as a component of the tail NNFA

computation given above, we can use the following recursive de�nition,

obtained by simplifying expression F T
R I

T
R � �TR and using the rules from the

proof of Theorem 2.4.

nred� = ; (2.12)

nreda = F T
a I

T
a ; where a 2 � (2.13)

nredJjK = nredJ [nredK [F T
J I

T
K [F T

KI
T
J (2.14)

CHAPTER 2. MCNAUGHTON AND YAMADA'S NFA 35

nredJK = F T
KI

T
J [nullKnredJ [nullJnredK (2.15)

nredJ� = ; (2.16)

Rules (2.12), (2.13) and (2.16) are trivial. Rule (2.14) follows from

applying distributive laws to simplify formula

nredJjK = (F T
J [F T

K)(I
T
J [ITK)� (�TJ [�TK)

Rule (2.15) is obtained by applying distributed laws to simplify formula,

nredJK = (F T
K [nullKF

T
J)(I

T
J [nullJI

T
K) � (�TJ [�TK [F T

J I
T
K)

The preceding idea embodies a general method of symbolic �nite dif-

ferencing for deriving e�cient functional programs. This method has been

mechanized and used extensively by Douglas Smith within his program

transformation system called KIDS (see for example [28]).

Each union operation in the preceding rules is disjoint and, hence, O(1)

time implementable. However our solution creates a new problem. Po-

tentially costly edges resulting from product operations occurring in rules

(2.14) and (2.15) may be useless, because they are never incorporated into

�. These edge may be useless for two reasons { (1) if the regular expression

is star free, and (2) if the edges are eliminated by rule (2.15).

To overcome this problem we will use lazy evaluation to compute prod-

ucts only when they actually contribute edges to the NNFA. Thus, in-

stead of maintaining an union nredR of products, we will maintain a set

CHAPTER 2. MCNAUGHTON AND YAMADA'S NFA 36

lazynredR of pairs of sets. Consequently, the overlapping union �TJ [F
T
J I

T
J

within formula (2.11) for MT
J� can be replaced by

�TJ [([[A;B]2lazynredJAB) (2:17)

However, this solution creates another problem: the sets forming F T

and IT , which are computed by the rules to construct the tail of an NNFA,

must be persistent in the following sense. Let the sets in the sequence

forming F T (respectively IT) be called F-sets (respectively I-sets). Each

F-set (respectively I-set) could be stored as a �rst (respectively second)

component of a pair belonging to lazynred. Given any such pair, we need

to iterate through the I-set G stored in the second component of the pair

in O(jGj) time.

The sequence of F-sets (respectively I-sets) are formed by two opera-

tions: 1. create a new singleton set; and 2. form a new set by taking the

disjoint union of two previous sets in the sequence. Clearly, each of these

sequences can be stored as a binary forest in which each subtree in the

forest represents a set in the sequence, where the elements of the set are

stored in the frontier (i.e. leaves). By construction each internal node in

the forest has two children.

We call the forest storing the F-sets (respectively I-sets) the F-forest (re-

spectively I-forest). For each node n belonging to the F-forest (respectively

I-forest), let Fset(n) (respectively Iset(n)) denote the F-set (respectively

CHAPTER 2. MCNAUGHTON AND YAMADA'S NFA 37

I-set) represented by n.

Each node in the F-forest and I-forest except the roots stores a parent

pointer. Each node n in the I-forest also stores a pointer to the leftmost

leaf of the subtree rooted in n and a pointer to the rightmost leaf of the

subtree rooted n. The frontier nodes (i.e. leaves) of the I-forest are linked.

This data structure preserves the unit-time disjoint union for F-sets and

I-sets, and supports linear time iteration through the frontier of any node

in the I-forest. Since all the F-sets and I-sets are subsets of the NNFA

states Q, the F-forest and I-forest each is stored in O(jQj) space.

Theorem 2.5 For any regular expression R we can compute lazynredR in

time O(r) and auxiliary space O(s), where r is the size of regular expression

R, and s is the number of occurrences of alphabet symbols appearing in R.

Proof: If G and H are two sets, let pair(G;H) = f[G;H]g if both G and

H are nonempty; otherwise, let pair(G;H) = ;. The proof makes use of

the following recursive de�nition of lazynredR obtained from the recursive

de�nition of nredR.

lazynred� = ; (2.18)

lazynreda = pair(F T
a ; I

T
a); where a 2 � (2.19)

lazynredJjK = lazynredJ [lazynredK [pair(F T
J ; I

T
K) [

pair(F T
K ; I

T
J) (2.20)

CHAPTER 2. MCNAUGHTON AND YAMADA'S NFA 38

lazynredJK = pair(F T
K ; I

T
J) [nullKlazynredJ [

nullJ lazynredK (2.21)

lazynredJ� = ; (2.22)

Operation pair(G;H) takes unit time and space. Each union operation

occurring in the rules above is disjoint and, hence, implementable in unit

time. Rule (2.19) contributes unit time and space for each alphabet symbol

occurring in R, or O(s) time and space overall. Rule (2.20) contributes unit

time for each alternation operator appearing in R or O(r) time overall. It

contributes two units of space for each alternation operator both of whose

alternands contain at least one alphabet symbol. Hence, the overall space

contributed by this rule is less than 2s. By a similar argument, Rule (2.21)

contributes O(r) time and less than s space overall. The other two rules

contribute no more than O(r) time overall. Hence, the time and space

needed to compute lazynredR are O(r) and O(s) respectively. ut

By Theorems 2.4 and 2.5, and by the fact that nredR can be computed

from lazynredR in O(jnredRj) time using formula (2.17), we have our �rst

theoretical result.

Theorem 2.6 For any regular expression R we can compute an equivalent

MYNNFA with s + 1 states in time O(r + m) and auxiliary space O(s),

where r is the size of regular expression R, m is the number of edges in

the MYNNFA, and s is the number of occurrences of alphabet symbols

CHAPTER 2. MCNAUGHTON AND YAMADA'S NFA 39

appearing in R.

40

Chapter 3

The Compressed NNFA

In this Chapter we present the compressed NNFA, the CNNFA, for short.

The CNNFA is an O(s) space compressed representation of the O(s2) space

McNaughton/YamadaNFA. Given any subset V of NFA states, the CNNFA

can be used to compute the set U of states one transition away from the

states in V in optimal time O(jV j+jU j). Using McNaughton and Yamada's

NFA, it takes O(jV j � jU j) time in the worst case.

3.1 Improving Space for McNaughton and

Yamada's NFA

Theorem 2.6 leads to a new algorithm that computes the adjacency form

of the MYNNFA MR in a left-to-right shift/reduce parse of the regular

expression R. Although this improves upon the algorithm of Berry and

Sethi, McNaughton and Yamada's NFA has certain theoretical disadvan-

CHAPTER 3. THE COMPRESSED NNFA 41

tages over Thompson's simpler NFA. Recall that for regular expression

(((((a�1ja2)
�ja3)

�:::ak)
� the number of edges in McNaughton and Yamada's

NFA is the square of the number of edges in Thompson's NFA.

Nevertheless, we can modify the algorithm just given so that in O(r)

time, it produces an O(s) space CNNFA that encodes McNaughton and

Yamada's NFA, and that supports acceptance testing in O(sjxj) time. In

the same way that nredR was represented more compactly as lazynredR,

we can represent �R, which is an union of cartesian products, as a set lazy�R

of pairs of set-valued arguments of these products. If MR is the CNNFA

equivalent to regular expression R, then the rules for MT
R are given just

below:

lazy�T� = ; (3.1)

lazy�a = ; (3.2)

lazy�TJjK = lazy�TJ [lazy�TK (3.3)

lazy�TJK = pair(F T
J ; I

T
K) [lazy�TJ [lazy�TK (3.4)

lazy�TJ� = lazy�TJ [lazynredJ (3.5)

After the preceding rules are processed we can obtain a representation for

MR by introducing a new state q0 and by adding the pair [q0; ITR] to lazy�
T
R

in accordance with equation (2.6).

We now show how to use lazy�R to simulate �R. If V is a subset of the

CHAPTER 3. THE COMPRESSED NNFA 42

MYNNFA states Q, then we can compute the collection of states �(V; a)

for all of the alphabet symbols a 2 � as follows. First we compute

finddomain(V) = fX : [X;Y] 2 lazy�jV \X 6= ;g

which is used to �nd the set of next states

next states(V) = fY : [X;Y] 2 lazy�jX 2 finddomain(V)g

Finally, for each alphabet symbol a 2 �, we see that

�(V; a) = fq : Y 2 next states(V); q 2 Y jA(q) = ag

In order to explain how lazy� is implemented, we will use some addi-

tional terminology. The CNNFA consists of an F-forest, an I-forest, and a

collection of crossing edges to represents pairs in lazy�. The F-forest and

I-forest share the same set of leaves. Forest nodes are connected by tree

edges. Each crossing edge, originating from an F-set node to an I-set node,

represents a pair in lazy�. For each F-set G represented by node n in the

F-forest, n stores a pointer to a list of edges originating from n. Further-

more, in addition to forest leaves, the F-forest and I-forest are compressed

to store nodes representing sets that appear as the �rst or second compo-

nents of a pair [X;Y] 2 lazy�. This can be achieved on-line as the F-forest

and I-forest are constructed by a kind of path compression that a�ects the

preprocessing time and space by no more than a small constant factor.

CHAPTER 3. THE COMPRESSED NNFA 43

q0

F-forest

I-forest

tree edge

crossing edge

Figure 3.1: The CNNFA organization.

Fig. 3.1 shows how the CNNFA is organized; another convenient view

is shown in Fig 3.2 in which F-forest and I-forest are separated. Fig. 3.3

illustrates a CNNFA equivalent to regular expression (ajb)�abb.

Theorem 3.1 For any regular expression R, its equivalent CNNFA, con-

sisting of F-forest, I-forest and lazy�, takes up O(s) space and can be

computed in time O(r) and auxiliary space O(s).

CHAPTER 3. THE COMPRESSED NNFA 44

q0

F-forest I-forest

crossing edges

Figure 3.2: Another View of the CNNFA organization.

a(| b) a b b*

I F

I-forest

F-forest

Figure 3.3: A CNNFA equivalent to regular expression (ajb)�abb

CHAPTER 3. THE COMPRESSED NNFA 45

Proof: Since each internal node in the F-forest and I-forest have at least two

children, and since their leaves are distinct occurrences of alphabet symbols,

they take up O(s) space. Each of the unions in the rules to compute

lazy�T is disjoint, and hence takes unit time. By the same argument used

to analyze the overall space contributed by Rule (2.21) in the proof of

Theorem 2.5, we see that Rule (3.4) contributes O(s) space and O(r) time

overall to lazy�TR. By Rule (2.22), Theorem 2.5, and a simple application of

structural induction, we also see that the space contributed by Rule (3.5)

(which results from adding lazynred to lazy�T) overall is O(s). It takes

unit time and space to construct lazy�R from lazy�TR and nullR. The overall

time bound for each rule is easily seen to be O(r). ut

The CNNFA also supports an e�cient evaluation of the three preceding

queries in order to simulate transition map �. The best previous worst case

time bound for giving a subset V of states and computing the collection of

sets �(V; a) for all of the alphabet symbols a 2 � is O(jV j� j�(V;�)j) using

an adjacency list implementation of McNaughton and Yamada's NFA, or

�(r) using Thompson's NFA.

In Theorem 3.3 we improve this bound, and obtain, essentially, optimal

asymptotic time without exceeding O(s) space. This is our main theoretical

result. It explains the apparent superior performance of acceptance testing

using the CNNFA over Thompson's. It explains more convincingly why

constructing a DFA starting from the CNNFA is at least one order of mag-

CHAPTER 3. THE COMPRESSED NNFA 46

nitude faster than when we start from either Thompson's or McNaughton

and Yamada's NFA. These empirical results are presented in section 5.1.

Before proving the theorem, we will �rst prove the following technical

lemma.

Lemma 3.2 Let V be a set of states in the CNNFA built from regular

expression R, and let lazy�V = f[X;Y] : [X;Y] 2 lazy�jX \ V 6= ;g. Then

jlazy�V j = O(jV j+ j�(V;�)j).

Proof: The result follows from proving that O(jV j + j�(V;�)j) is a bound

for each of the subsets of lazy�V contributed by rules (2.19), (2.20), (2.21),

and (3.4) respectively. The bound holds for subsets contributed by rules

(2.19), (2.20), and (3.4), because they form one-to-one maps.

The proof for the subset contributed by (2.21) is split into two cases.

For convenience, let VJ denote the set of states in V such that their cor-

responding symbol occurrences appear in regular expression J , where J is

a subexpression of R. First, consider the set B of pairs [F T
K; I

T
J] 2 lazy�V

for subexpressions JK, where VJ = ;. We claim that these edges form

an one-to-many map, which implies the bound. Suppose this were not the

case. Then we would have a subexpression JK, and a subexpression J1J2

of J such that ITJ = ITJ1 and pairs [F T
K ; I

T
J] and [F T

J2
; ITJ1] belonging to B.

However, since J contains no occurrences of an alphabet symbol in V , then

J2 does not either. Hence, the pair [F T
J2
; ITJ1] cannot belong to B. Hence,

CHAPTER 3. THE COMPRESSED NNFA 47

lazyδPV

DV

(V , Σ)δV

F-forest I-forest

parent pointer

Figure 3.4: To compute �(V; a) in a CNNFA

the claim holds.

Next, consider the set C of pairs [F T
K ; I

T
J] 2 lazy�V for subexpressions

JK, where VJ 6= ;. Proceeding from inner-most to outer-most subexpres-

sion JK, we charge each pair [F T
K; I

T
J] 2 C to an uncharged state in VJ .

A simple structural induction would show that VJ contains at least one

uncharged state. Let J1J2 be an inner-most subexpression in R such that

VJ1 is nonempty, and [F T
J2
; ITJ1] 2 lazy�V . Then both VJ1 and VJ2 contains at

least one uncharged state. After an uncharged state in VJ1 is charged, VJ1J2

still contains an uncharged state from VJ2 . The inductive step is similar.

The result follows. ut

Theorem 3.3 Given any subset V of CNNFA states, we can compute all of

CHAPTER 3. THE COMPRESSED NNFA 48

the sets �(V; a) for every alphabet symbols a 2 � in time O(jV j+ j�(V;�)j).

Proof: The sets belonging to finddomain(V) are represented by all the

nodes PV along the paths from the states belonging to V to the roots of

the F-forest. These nodes PV can be found in O(jV j + jPV j) time by a

marked traversal of parent pointers in the forest. Observe that jPV j can be

much larger than jV j.

Computing next states(V) involves two steps. First, for each node n 2

PV , we traverse a nonempty list of nodes in the I-forest representing fY :

[Fset(n); Y] 2 lazy�g. This step takes time linear in the sum of the lengths

of these lists. (Observe that this number can be much larger than jPV j.)

Second, if DV is the set of all nodes in the I-forest belonging to these lists,

then next states(V) = fIset(n) : n 2 DV g. We can compute the set

next states(V) in O(jf[Fset(n); Y] : n 2 PV ; [Fset(n); Y] 2 lazy�gj) =

O(jV j+ j�(V;�)j) time by Lemma 3.2.

Calculating �(V;�) involves computing the union of the sets belonging

to next states(V). This is achieved in O(j�(V;�)j) time using the left and

right descendant pointers stored in each node belonging to DV , traversing

the unmarked leaves in the frontier, and marking leaves as they are tra-

versed. Multiset discrimination [9] can be used to separate out all of the

sets fq 2 �(V;�)jA(q) = ag for each a 2 � in time O(j�(V;�)j). See Fig.

3.4 for an illustration of �(V; a) computation. ut

CHAPTER 3. THE COMPRESSED NNFA 49

Consider an NFA constructed from the following regular expression:

(

k �0s
z }| {

�j(�j(� � � (�ja)�)�) � � �)�)n

In order to follow transitions labeled \a", we have to examine �(n2) edges

and �(n) states in O(n2) time for McNaughton and Yamada's NFA, �(kn)

states and edges in �(kn) time for Thompson's machine, and �(n) states

and edges in �(n) time for the CNNFA.

3.2 Optimizing the CNNFA

In this section, we introduce two simple transformations, packing and path

compression that can greatly improve the CNNFA representation. For sim-

plicity, we sometimes use FJ and IJ to denote the F-set and I-set of the tail

machine MT
J respectively.

Packing is de�ned in terms of a simpler transformation called promotion.

If lazy� contains both [F1; I] and [F2; I], and if there exists an F-set F =

F1[F2, then the F-set promotion transformation replaces [F1; I] and [F2; I]

within lazy� by a single pair [F; I] (see Fig. 3.5). Similarly, if lazy� contains

both [F; I1] and [F; I2], and if there exists an I-set I = I1 [I2, then the I-

set promotion transformation replaces [F; I1] and [F; I2] within lazy� by

a single pair [F; I] (see Fig. 3.6). The packing transformation involves a

bottom-up traversal of the F-forest in which I-set and F-set promotion are

performed. If F-set node v is a leaf, then by applying the I-set promotion

CHAPTER 3. THE COMPRESSED NNFA 50

F-forest I-forest F-forest I-forest

F-set Promotion

Figure 3.5: F-set promotion

F-forest F-forest I-forest

I-set Promotion

I-forest

Figure 3.6: I-set promotion

CHAPTER 3. THE COMPRESSED NNFA 51

to edges attached to v. If v is an internal F-set node whose left child vl

and right child vr are both processed, then v is processed by �rst applying

F-set promotion to edges attached to vl and vr, and then applying I-set

promotion to edges attached to v.

In a single linear time pass, we can perform the packing transformation.

Before we discuss our packing algorithm, we need some additional termi-

nology. Every I-set is a collection of alphabet symbol occurrences. We say

that I-set I1 is less than I-set I2 if the rightmost symbol occurrence in I1 is

to the left of the rightmost symbol occurrence in I2. Pair [F; I1] is less than

pair [F; I2] if I1 < I2. Without loss of generality, we assume that initially,

edge list attached to every F-set node is in descending order. Moreover, we

also maintain this ordering during packing.

Consider an F-set node v with left child vl and right child vr. Let Jl

and Jr be the outermost subexpressions of R whose I-sets are denoted by

vl and vr respectively, and J be the innermost subexpression whose F-set

is denoted by v. Notice that J must be either JlJr or JljJr. We shall show

in the next Chapter that common tails of edges attached to vl and vr must

denote IJl, JJr or IJl[IJr . Those edges with common tails are heads or tails

of the edge lists attached to vl and vr. Therefore, to apply F-set promotion

to edges attached to vl and vr we need to examine heads and tails of the

edge lists attached to vl and vr only.

Let v be an internal F-set node denoting FJ , for some subexpression J ,

CHAPTER 3. THE COMPRESSED NNFA 52

I K 0I K 1I K 2I K k

. . .

I-forest F-forest

v

Figure 3.7: I-set promotion applied to edges attached to internal F-set node
v

and [FJ ; IK1
], [FJ ; IK2

], � � �, [FJ ; IKk
] be the original list of edges attached to

v, whereK1; � � � ;Kk are the outermost subexpressions in R whose I-sets are

IK1
; � � � ; IKk

respectively. Assume that J 0 is the innermost subexpression

such that FJ 0 = FJ . Consider that case that K1 is not right to J 0. By

the CNNFA construction rules, there must exist some superexpression J1

of J 0, where FJ1 = FJ 0 , such that without considering useless �-expressions,

(1) Ji+1 = KijJi or KiJi, 1 � i < k, is a subexpression of R, and (2)

nullKi
= f�g, 1 � i � k. Fig 3.7 illustrates the edge structure of [FJ ; IK1

],

� � �, [FJ ; IKk
]. Form Figure 3.7, there are edges to be packed if and only if

[FJ ; IK0
] is constructed by a previous F-set promotion. Hence, I-set pro-

motion applied to edges attached to v can be done in O(k) time. As to

other cases, their packing algorithms are the same. Since each crossing

edge is examined by packing transformation at most twice, the packing

CHAPTER 3. THE COMPRESSED NNFA 53

v 1 v s-1 v s s-1V sV

1a s-1a

0q
1V

sa

.

F-forest I-forest

Figure 3.8: A CNNFA equivalent to ((a1j�)(� � � ((as�1j�)(asj�)�)� � � �)�)�

without optimization.

transformation can be done in O(s) time.

The packing transformation can greatly simplify the representation of

lazy�. In the case of regular expression

((a1j�)(� � � ((as�1j�)(asj�)
�)� � � �)�)�

packing can simplify lazy� from 3s � 1 pairs into two pairs. The original

CNNFA equivalent to ((a1j�)(� � � ((as�1j�)(asj�)�)� � � �)�)� is shown in Fig.

3.8. The CNNFA resulting from packing transformation is illustrated in

Fig. 3.9.

When applying the packing transformation, we can also carry out the

CHAPTER 3. THE COMPRESSED NNFA 54

F-forest I-forest

v 1 v s-1 v s s-1V sV0q
1V

1a s-1a sa

.

Figure 3.9: A CNNFA equivalent to ((a1j�)(� � � ((as�1j�)(asj�)�)� � � �)�)� re-
sulting from Packing.

CHAPTER 3. THE COMPRESSED NNFA 55

same kind of path compression described in the previous section, so that

the F-forest and I-forest only contain nodes in the domain (respectively

range) of lazy�. Whereas previously the forest leaves (corresponding to

NFA states) were una�ected by compression, the packing transformation

can remove leaves in the F-forest and I-forest from the domain and (respec-

tively) range of lazy�. Moreover, those F-set and I-set nodes that denote

the same set can be merged into a single node. When path compression

eliminates leaves, we need to turn the symbol assignment map A into a

multi-valued mapping de�ned on I-forest leaves; that is, whenever I-forest

leaves q1; � � � ; qk are replaced by leaf q, we take the following steps;

� remove the old leaves q1; � � � ; qk from the domain of A;

� assign the set of symbols fy : x 2 fq1; � � � ; qkg; [x; y] 2 Ag to A at q.

However, we can also have alphabet symbol occurrences only in those sets

denoted by internal I-forest nodes. For each such symbol occurrence a, we

add a linking edge labeled a originating from the lowest I-forest node v1 to

the F-forest leaf v2, where a is in both sets denoted by v1 and v2 (see Fig.

3.10 for an example). Consider the expression

((a1j�)(� � � ((as�1j�)(asj�)
�)� � � �)�)�

again. Path compression will turn the data structure into the one depicted

in Fig. 3.11. The original CNNFA has 4s � 1 states, but after path com-

pression, it has only two states. In using our compressed representation to

CHAPTER 3. THE COMPRESSED NNFA 56

q 0

q 0

a b c d()| |

I-forest

F-forest

{b, c, d}

{a, c, d}

a b

F-forest

I-forest

*

c

tree edge

crossing edge

d

linking edge

Figure 3.10: Linking edges in the CNNFA for (abjcjd)�

CHAPTER 3. THE COMPRESSED NNFA 57

1a a2 sa, , . . ., }{

0q tv

Figure 3.11: A CNNFA equivalent to ((a1j�)(� � � ((as�1j�)(asj�)�)� � � �)�)�

resulting from packing and path compression.

simulate an NFA, the transition edge t can be taken only when the current

transition symbol belongs to fa1; a2; � � � asg which labels node v.

The reduced number of NFA states, resulting from packing and path

compression, partly explains the superior performance of the CNNFA in

both acceptance testing and DFA construction. Fig. 3.12 illustrates a CN-

NFA resulting from applying packing and path compression to the CNNFA

in Fig. 3.3. It contains 6 states and 6 edges in contrast to the 9 states and

14 edges found in the MYNNFA of Fig. 3.3. Hereafter, we assume that the

CNNFA is optimized.

Those forest nodes touched by crossing edges are CNNFA states. The

following Theorem shows the space complexity of the CNNFA.

Theorem 3.4 Let R be a regular expression containing s occurrences of

alphabet symbols. If there are c crossing edges (excluding [q0; IR]) and f

forest nodes touched by crossing edges (excluding q0) in CNNFA MR, then

CHAPTER 3. THE COMPRESSED NNFA 58

a(| b) a b b*

I F

I-forest

F-forest

Figure 3.12: A CNNFA equivalent to (ajb)�abb

MR has exactly f + 1 states and f + c+ s� 1 edges at most.

Proof: It is clear that including the initial state, there are f + 1 states.

Suppose there are k forest nodes touched by crossing edges served as both

I-forest and F-forest leaves. Then there are no more than f + k � 2 tree

edges. Notice that k is smaller or equal to s. We have at most s�k linking

edges. By summing up the number of tree, crossing, linking edges and

[q0; IR], we have at most (f + k� 2)+ c+ (s� k) + 1 = f + c+ s� 1 edges

in MR. ut

59

Chapter 4

Analysis of the CNNFA

In this Chapter we analyze the time and space complexities of the CNNFA

more precisely than in the previous chapter. Section 4.1 counts crossing

edges. Section 4.2 shows that there are 5s=2 CNNFA states in the CNNFA

constructed from a regular expression with s alphabet symbol occurrences.

In section 4.3 we compare the CNNFA with Thompson's NFA.

4.1 Crossing Edges

In this section, we present several tight bounds regarding crossing edges.

Previously we showed that given any subset V of the unoptimized CNNFA

states, to compute the set U = �(V;�) at most O(jV j+ jU j) crossing edges

are visited. We shall show that min(3jU j=2, jV j+ jU j�1) is a better bound

on the number of crossing edges. We use cnnfaR to denote the CNNFA

for regular expression R, and use cnnfa�R to denote the set of crossing

CHAPTER 4. ANALYSIS OF THE CNNFA 60

edges in cnnfaR. We shall also show that CNNFA cnnfaR has no more

than (3s + 1)=2 crossing edges as a corollary, where R contains s alphabet

symbol occurrences. Throughout this and next section, the forest structure

in the CNNFA is a collection of branching binary trees (i.e. we do not

perform path compression transformation), and we assume that no regular

expressions contain � subexpressions. Our argument can be easily extended

to the general case.

4.1.1 The Relaxed CNNFA

Without loss of generality, we will analyze a relaxed form of the CNNFA

that is larger and slower than the CNNFA. It can be converted into the

CNNFA easily. There are two kinds of crossing edges in the relaxed CN-

NFA: one stems from products, and the other from star operators. We �rst

present properties of the CNNFA.

Lemma 4.1 Let R be a regular expression. If � 62 nullR, then there exists

a pair [a; b], [a; b] 2 FR � IR, such that [a; b] 62 �R.

Proof: Trivial. ut

Corollary 4.2 Let R be a regular expression. If � 62 nullR, then there is

no crossing edge [FR; IR] in both lazy�R and cnnfa�R.

Proof: Directly from Lemma 4.1. ut

CHAPTER 4. ANALYSIS OF THE CNNFA 61

J K J K J K

Figure 4.1: To derive [F(JjK)�; I(JjK)�] in the CNNFA for (J jK)�.

Lemma 4.3 Let R be a regular expression. Then, [FR; IR] 2 cnnfa�R�.

Proof: It is clear for the base case that [Fa; Ia] 2 cnnfa�a�, where a is an

alphabet symbol. If R = J�, then, by the induction hypothesis, [FJ ; IJ] 2

cnnfa�J� . Therefore, [FR; IR] 2 cnnfa�R�.

Consider the case R = J jK. We have lazy�R� = lazy�J� [lazy�K� [

f[FJ ; IK]; [FK; IJ]g. By the induction hypothesis, [FJ ; IJ] 2 cnnfa�J�, and

[FK; IK] 2 cnnfa�K� . By further applications of F-set and I-set promotion,

we pack [FJ ; IJ], [FJ ; IK], [FK; IJ] and [FK; IK] into [FR; IR]. Fig. 4.1 shows

how it is accomplished. We use a rectangle labeled J to denote CNNFA

cnnfaJ . The upper circle in cnnfaJ is the F-set node denoting FJ , and the

lower circle is the I-set node denoting IJ .

The proof for R = JK is split into four cases. If both nullJ and nullK

are f�g, then lazy�R� = lazy�J� [lazy�K� [f[FJ ; IK]; [FK; IJ]g. Like the

R = J jK case, we have [FR; IR] 2 cnnfa�R�.

CHAPTER 4. ANALYSIS OF THE CNNFA 62

Consider the case that both nullJ and nullK are empty. Then, IR� = IJ ,

FR� = FK and lazy�R� = lazy�J [lazy�K [f[FJ ; IK]; [FK; IJ]g. Since both

nullJ and nullK are empty, [FK; IJ] cannot be packed with any edge in

cnnfa�J [cnnfa�K [f[FJ ; IK]g. Therefore, [FR; IR] = [FK; IJ] 2 cnnfa�R�.

Next consider the case that nullJ = f�g and nullK = ;. Then, IR� =

IJ [IK, FR� = FK and lazy�R� = lazy�J [lazy�K� [f[FJ ; IK]; [FK; IJ]g.

By the induction hypothesis, [FK; IK] 2 cnnfa�K� . An application of I-set

promotion packs [FK; IK] and [FK; IJ] into [FR; IR].

Finally consider the case that nullJ = ; and nullK = f�g. Then, IR� =

IJ , FR� = FJ [FK and lazy�R� = lazy�J� [lazy�K [f[FJ ; IK]; [FK; IJ]g.

Though, by the induction hypothesis, [FJ ; IJ] 2 cnnfa�J�, [FJ ; IJ] cannot

be packed with [FJ ; IK]. Furthermore [FK; IJ] cannot be packed with any

edges in cnnfa�K even when [FK; IK] 2 cnnfa�K. An application of F-set

promotion packs [FJ ; IJ] and [FK; IJ] into [FR; IR]. ut

Before continuing our discussion, we need some additional terminology.

Let R be a regular expression, and J and K be subexpressions of R. If

R = K�, then R is a star-top regular expression. A crossing edge [F; I] is

a product edge with respect to J and K if F = FJ and I = IK, and if JK

is a subexpression of R. We sometimes simply use [FJ ; IK] to denote the

product edge with respect to J and K. A crossing edge [F; I] is a star edge

with respect to J if F = FJ and I = IJ . A star edge [F; I] with respect

to J is real if J is star-top. We sometimes use [FJ� ; IJ�] to denote the star

CHAPTER 4. ANALYSIS OF THE CNNFA 63

edge with respect to J�. For convenience, we call a real star edge [FJ� ; IJ�]

a left star edge if J�K or J�jK is a subexpression; otherwise, we regard

the real star edge [FJ� ; IJ�] as a right star edge. Crossing edge [I; F] is a

lazy edge if [I; F] is kept in the set lazynred �rst, and if it is added to

lazy�R by rule 2.17. Two crossing edges [F1; I1] and [F2; I2] are disjoint if

F1 � I1 \ F2 � I2 = ;. By de�nition, all the edges in lazy�R and cnnfa�R

are mutually disjoint.

Lemma 4.4 For any regular expression R, except real star edges, all the

lazy edges in lazy�R are not in cnnfa�R.

Proof: Suppose lazy edge [FJ ; IK] 2 lazy�R is not a real star edge, but

[FJ ; IK] 2 cnnfa�R. Since [FJ ; IK] 2 lazy�R, there must exist a regular

expression Q� such that Q� is the innermost subexpression in R containing

both J and K. Moreover, by the CNNFA construction rules, FK � FQ�

and IJ � IQ�. By Lemma 4.3, [FQ�; IQ�] 2 cnnfa�Q�. Since all the edges

in cnnfa�Q� are mutually disjoint, [FJ ; IK] 62 cnnfa�Q�. Hence, [FJ ; IK] 62

cnnfa�R, a contradiction. ut

We shall relax our packing transformation to facilitate our argument:

namely, promotions are applied only if they introduce new star edges. We

call this relaxed transformation the relaxed packing transformation. We

use cnnfa 0
R to denote the relaxed CNNFA resulted from applying relaxed

packing transformations to lazy�R, and use cnnfa 0�R to denote the set of

CHAPTER 4. ANALYSIS OF THE CNNFA 64

crossing edges in cnnfa 0
R.

Lemma 4.5 For any regular expression R, cnnfa 0�R contains only product

and real star edges.

Proof: Originally, lazy�R contained product and lazy edges. The relaxed

packing transformation, by Lemma 4.4, eliminates all the lazy edges that

are not real star edges. In addition, relaxed packing transformations only

introduce real star edges. ut

It is interesting to note that the relaxed CNNFA is closely related to the

star normal form notation for regular expressions [6] used by Br�uggemann-

Klein to develop a linear time McNaughton/Yamada NFA construction

algorithm.

The crossing edge set cnnfa 0� is easy to analyze, and is crucial to our

argument. However, before further discussion, we need to study more prop-

erties of crossing edges in the relaxed CNNFA.

Lemma 4.6

1. Every F-set node has at most one outgoing product edge and/or one

outgoing star edge, and every I-set node has at most one incoming

product edge and/or one incoming star edge,

2. Let I-set node n have left child n1 and right child n2. I-set node

n, n1 and n2 denote I-set I, I1 and I2 respectively. Assume that J1

CHAPTER 4. ANALYSIS OF THE CNNFA 65

and J2 are the outermost subexpressions of R such that IJ1 = I1 and

IJ2 = I1. Then, there is a subexpression K which is either J1J2 or

J1jJ2 (depends on R) such that IK = I. Furthermore, if nullJ2 = f�g,

then the outermost subexpressionK1 of R, in which IK1
= I, isK������,

where there is zero or more * on top of K.

3. For any regular expression R, there is no product edge originating

from the F-set node denoting FR and there is also no product edge

reaching the I-set node denoting IR.

Proof: (1) is trivial.

As to (2), either J1J2 or J1jJ2 must be a subexpression of R, and nullJ1 =

f�g. Therefore, IK = I. If nullJ2 = f�g, then nullK = f�g. Thus, the

outermost subexpression whose I-set is IK must be of the form K�����.

(3) can be easily proved by an inductive argument. ut

A pair of crossing edges can be packed if and only if they share the

same origin or tail, and their tails or origins are siblings. Since every F-set

(respectively I-set) node has at most one outgoing (respectively incoming)

product edge, no pairs of product edges can be packed. Similarly, every

F-set and I-set node is touched by at most one star edge. Therefore, no

pairs of star edges can be packed. By edge e touching node v, we mean that

node v is either the origin or the tail of edge e. We shall see that a pair of

crossing edges can be packed only if one of them is a product edge, and if

CHAPTER 4. ANALYSIS OF THE CNNFA 66

J * J *

KJ

K K

*

Figure 4.2: Edge Packing in cnnfa 0
J�K

the other is a star edge. There are two basic patterns of edge packing in

the relaxed CNNFA.

� two edges share the same origin: Let star edge [FJ� ; IJ�] and product

edge [FJ1 = FJ�; IK], where J1K is a subexpression, share the same

origin, and let the I-set nodes denoting IJ� and IK be siblings. These

two edges can be packed into [FJ�; IJ� [IK]. By (3) in Lemma 4.6, J1

is not a proper subexpression of J . However, J1 is not a proper super

expression of J� since nullJ� = f�g. Therefore, J� = J1, i.e. J�K is

a subexpression of R (see Fig. 4.2).

� two edges share the same tail: Let star edge [FK�; IK�] and product

edge [FJ ; IK1
= IK�], where JK1 is a subexpression, share the same

tail, and let the F-set nodes denoting FK� and FJ be siblings. These

two edges can be packed into [FJ [FK�; IK�]. By (3) in Lemma 4.6,

CHAPTER 4. ANALYSIS OF THE CNNFA 67

K * K *

K *J

J J

Figure 4.3: Edge Packing in cnnfa 0
JK�

K1 is not a proper subexpression of K. However, K1 is not a proper

super expression of K� since nullK� = f�g. Therefore, K� = K1, i.e.

JK� is a subexpression of R (see Fig. 4.3).

A crossing edge that results from packing a star and a product edge is

a singly promoted edge. We shall see that except for the two patterns

previously stated, there is no other case in which promotion can be applied.

Lemma 4.7 No singly promoted edge can be involved in an application of

F-set or I-set promotion.

Proof: We prove this lemma by a case analysis. A singly promoted edge can-

not be packed with a star edge. Consider a singly promoted edge [FJ� ; IJ�K],

where J�K is a subexpression. The only star edge originating from the node

CHAPTER 4. ANALYSIS OF THE CNNFA 68

denoting FJ� is [FJ� ; IJ�]. There is no star edge reaching the node denoting

IJ�K while it originates from an F-set node that is the sibling of the node

denoting FJ� . Therefore, no star edge can be packed with [FJ�; IJ�K]. Sim-

ilarly, no star edge can be packed with a singly promoted edge [FJK�; IK�].

A singly promoted edge cannot be packed with a product edge. Consider

a singly promoted edge [FJ�; IJ�K], where J�K is a subexpression. There

is no product edge other than [FJ�; IK] originating from the node denoting

FJ�. There is no product edge reaching the node denoting IJ�K while it

originates from an F-set node that is the sibling of the node denoting FJ�.

Therefore, no product edge can be packed with [FJ�; IJ�K]. Similarly, no

product edge can be packed with a singly promoted edge [FJK�; IK�].

Two singly promoted edges cannot be packed. Consider the case in

which [FJ�; IJ�K], is a singly promoted edge, where J�K is a subexpression.

The only singly promoted edge, if there is any, other than [FJ�; IJ�K] orig-

inating from the F-set node denoting FJ� is [FJ1J
�

2
= FJ�; IJ�

2
], where J1J�

2

is a subexpression. Regular expression J� is not a subexpression of J1J�
2

because FJ� = FJ1J
�

2
. Moreover, if J1J

�
2 is a subexpression of J�, then the

node denoting IJ�

2
is not the sibling of the node denoting IJ�K. Therefore,

singly promoted edges [FJ�; IJ�K] and [FJ1J
�

2
; IJ�

2
] cannot be packed. The

only singly promoted edge, if there is any, other than [FJ�; IJ�K] reaching

I-set node denoting IJ�K is [FK1K
�

2
; IK�

2
= IJ�K], whereK1K

�
2 is a subexpres-

sion. For a similar reason, [FJ� ; IJ�K] cannot be packed with [FK1K
�

2
; IK�

2
].

CHAPTER 4. ANALYSIS OF THE CNNFA 69

The proof for the singly promoted edge [FJK� ; IK�] case is similar. ut

From preceding discussion, we can easily convert a relaxed CNNFA

cnnfa 0
R into CNNFA cnnfaR only by packing pairs of product and star

edges of cnnfa 0
R that share the same origin or tail. Moreover, it suggests a

more e�cient CNNFA construction algorithm. The packing transformation

presented in the previous chapter is slightly ine�cient. Nevertheless, it

suggests a formal derivation of the CNNFA. Since singly promoted edges

cannot be promoted again, we call them promoted edges, for short.

4.1.2 Counting Crossing Edges

De�nition 4.8 Let Tv be a branching binary tree rooted at node v. All

the right children in Tv and root v are charged nodes. If we only charge

credit to charged nodes in Tv, then Tv is a charged tree. A k-leaf charged

tree has exactly k charged nodes. By de�nition, tails of product edges are

charged nodes.

Theorem 4.9 Let V be a set of CNNFA states such that V = �(fq0g; x),

for some string x 2 ��. To compute the set U = �(V;�) at most jV j+jU j�1

crossing edges are visited.

Proof: For each crossing edges visited, we charge one unit of credit to a

charged nodes. Only charged nodes are charge. Charged nodes are at most

doubly charged. We shall show that there are at most jU j charged nodes

CHAPTER 4. ANALYSIS OF THE CNNFA 70

being charged, and among them at most jV j � 1 nodes are doubly charged.

Therefore, there are at most jV j+ jU j � 1 crossing edges visited.

We use the following charging scheme.

1. For each product edge visited, we charge one unit of credit to its tail.

2. If the tail of a visited star edge is a charged node, then we charge one

unit of credit to its tail; otherwise, we charged one unit of credit to

the sibling of its tail (which is a charged node).

3. For each promoted edge visited, we give one unit of credit to the tail

of the product edge which this promoted edge is promoted from.

4. If [q0; IR] is visited, then we give one unit of credit to the node denot-

ing IR.

Under this charging scheme, only charged nodes can be charged, all the

charged node are at most singly charged except those I-set nodes denoting

IK, where J�K� or J�jK� is a subexpression. All the I-set nodes are at

most doubly charged (see Fig. 4.4).

An I-set I is maximal with respect to U if I � U , and if there is no

I-set I 0 such that I � I 0 � U . An I-set node is maximal with respect to U

if it denotes a maximal I-set. If a maximal I-set node v is not a charged

node, then we move the credit which is charged to the sibling of v to v.

After credit being moved, only the descendents of maximal I-set nodes can

CHAPTER 4. ANALYSIS OF THE CNNFA 71

K *
J * K *J *

J * K * J * K *|

doubly charged nodes

Figure 4.4: Patterns of doubly charged node

be charged, and subtrees rooted at maximal I-set nodes are charged trees.

Therefore, there are at most jU j charged nodes being charged.

Every maximal I-set node v is at most singly charged. Consider the

case that v is a root in the I-forest. If v is not the node denoting IR, then

v is at most singly charged because there is at most one crossing edge from

which v can be charged. If v is the node denoting IR, then v can be doubly

charged only when R is star-top (one is due to star edge [FR; IR], the other

is due to [q0; IR]). However, because the start state q0 has no incoming

edges, these two edges cannot be visited simultaneously during acceptance

testing. Therefore, v is at most singly charged.

Suppose a maximal I-set node v is doubly charged, where v is not a root

CHAPTER 4. ANALYSIS OF THE CNNFA 72

in the I-forest. But it is not the case because if v is doubly charged, then

all the leaves of the subtree rooted at the sibling of v are also in U (see Fig.

4.4). Therefore, v is not a maximal I-set node. A contradiction.

By a bottom-up structural induction on the structure of regular expres-

sions, we can show that there are at most jV j � 1 doubly charged nodes.

Recalling that an I-set node v is doubly charged, then v denotes some I-set

IK, where J�K� or J�jK� is a subexpression, and both J� and K� contain

at least one alphabet symbol occurrence in V . Let each alphabet symbol

occurrence in V carry one unit of credit. If J�K� or J�jK� is a subex-

pression of R, and if both J� and K� contain at least one alphabet symbol

occurrence in V , we then pay one unit of credit to the node denoting IK

from the credit that J�K� or J�jK� processes. The inductive argument

that any subexpression of R, which contains alphabet symbol occurrences

in V , processes at least one unit of credit is easy to see. Hence, there are

at most jV j � 1 doubly charged nodes. ut

The CNNFA for ((� � � ((a1j�)(a2j�)) � � �)(asj�)) is shown in Fig. 4.5. If

V is fa1g, then U = fa2 � � � asg, and there are s� 1 crossing edges visited.

We shall show in the next theorem that 3jU j=2 is also a bound of the

number of crossing edges visited. Before we proceed, we need to prove the

following technical lemma.

Lemma 4.10 Let K�
n be a subexpression of R, and I-set node vn denote

IK�

n
. There is no doubly charged I-set node in the right path from the right

CHAPTER 4. ANALYSIS OF THE CNNFA 73

a s0q a1 a s-1a 2

I-forest

F-forest

Figure 4.5: The CNNFA for ((� � � ((a1j�)(a2j�)) � � �)(asj�))

child of vn to a leaf in the I-forest.

Proof: Suppose an I-set node v1 in the right path from the right child

of vn is doubly charged (see Fig. 4.6). Since v1 is doubly charged, the

outermost subexpression, whose I-set is denoted by v1, must be K�
1 , for

some regular expression K�
1 , and [FK�

1
; IK�

1
] 2 cnnfa�R. Let Ji, 1 � i <

n, be the outermost subexpression whose I-set is denoted by the sibling

of vi. Because each node denoting IJi, 1 � i < n, has a right sibling,

nullJi = f�g. Then, by (2) of Lemma 4.6, the outermost subexpression Ki,

1 < i � n, whose I-set is denoted by vi, is of the form (Ji�1Ki�1)������ or

(Ji�1jKi�1)������. Therefore, FK�

1
� FK�

n
and IK�

1
� IK�

n
. However, by Lemma

4.3, [FK�; IK�] 2 cnnfa�K�

n
. Then, by disjointness of cnnfa�, [FK�

1
; IK�

1
] 62

cnnfa�K�

n
. A contradiction. ut

CHAPTER 4. ANALYSIS OF THE CNNFA 74

K 1
*

K 2v2

v1J 1

J 2

K 3v
3

K

Jn-1

*vn n

Figure 4.6: No doubly charged node in the right path

Theorem 4.11 Let V be a set of CNNFA states such that V = �(fq0g; x),

for some string x 2 ��. To compute the set U = �(V;�) at most 3jU j=2

crossing edges are visited.

Proof: Using the same charging scheme as Theorem 4.9, we summarize the

following charging properties.

� Only charged nodes can be charged, and they are at most doubly

charged.

� Maximal I-set nodes with respect to U is at most singly charged.

� By Lemma 4.10, if I-set node v is doubly charged, then all the nodes

in the right paths from both the right child and the left sibling of v

CHAPTER 4. ANALYSIS OF THE CNNFA 75

to a leaf are at most singly charged.

A charged tree is feasible if it satis�es the charging constraint listed

above. A feasible charged tree is unsaturated if there is no doubly charged

node in the right path from the root to a leaf. We count the number of

visited edges during �(V;�) computation by calculating how much credit

can be charged to feasible charged trees.

By an inductive argument, we shall show that a k-leaf feasible charged

tree is charged at most 3k=2 unit of credit, and a k-leaf unsaturated feasible

charged tree is charged at most (3k�1)=2 unit of credit. If an unsaturated

feasible tree T is a single nodes, then T is charged at most one unit of

credit. Let T rooted at v be a k-leaf unsaturated feasible charged tree with

k1 and k2 leaves in the left and right subtrees respectively. The left child

of v is not charged. If we move the credit, which is charged to v, to the left

child of v, then the left subtree of T is a k1-leaf feasible charged trees, and

the right subtree of T is a k2-leaf unsaturated feasible charged trees. By

the induction hypothesis, the left and right subtrees are charged at most

3k1=2 and (3k2 � 1)=2 unit of credit respectively. Therefore, T is charged

at most (3k � 1)=2 unit of credit.

A k-leaf feasible charged tree is charged at most 3k=2 unit of credit. A

single node feasible charged tree is charged at most one unit of credit. Let

T rooted at v be a k-leaf feasible charged tree with k1 and k2 leaves in the

left and right subtrees respectively. Consider the case that the right child

CHAPTER 4. ANALYSIS OF THE CNNFA 76

of v is at most singly charged. If we move the credit, which is charged to

v, to the left child of v, then the left and right subtree of T are k1-leaf and

k2-leaf feasible charged trees respectively. By the induction hypothesis, the

left and right subtrees are charged at most 3k1=2 and 3k2=2 unit of credit

respectively. Therefore, T is charged at most 3k=2 unit of credit.

Consider the case that the right child of v is doubly charged. If we move

the credit, which is charged to v, to the left child of v, and if we deduce one

unit of credit from the right child of v, then both left and right subtrees

of T are unsaturated charged trees. By the induction hypothesis, T is at

most charged 3k=2 unit of credit.

Because each k-leaf subtree rooted at a maximal I-set node is charged

at most 3k=2 unit of credit, there are at most 3jU j=2 crossing edges visited.

ut

The CNNFA for regular expression (a�
1b

�
1) � � � (a

�
sb

�
s) is shown in Fig. 4.7.

If V is fa1; b1; � � � ; as; bsg, then U = �(V;�) consists of 2s states, and in

computing �(V;�) there are exactly 3s� 1 crossing edges visited.

Corollary 4.12 For any regular expression R with s alphabet symbol oc-

currences, jcnnfa�Rj � (3s+ 1)=2.

Proof: If V is the set of all CNNFA states, then all the crossing edges

are visited in computing �(V;�). All the trees in the I-forest are feasible

charged trees except the one rooted at I-set node vR denoting IR. The

CHAPTER 4. ANALYSIS OF THE CNNFA 77

a1 b 1 as-1 bs-1 as b s0q

I-forest

F-forest

Figure 4.7: The CNNFA for (a�
1b

�
1) � � � (a

�
sb

�
s).

reason that the tree rooted at vR is not a feasible charged tree is that vR

could be doubly charged. I-set node vR is doubly charged only if R is

star-top (one is due to star edge [FR; IR], and the other is due to [q0; IR]).

However, if R is star-top, and if we deduce one unit of credit charged at

vR, then, by Lemma 4.10, the charged tree rooted at vR is an unsaturated

charged tree; otherwise, vR is singly charged and the subtree rooted at vR

is a feasible charged tree. Hence by an argument similar to Theorem 4.11,

there are at most (3s + 1)=2 crossing edges in cnnfaR. ut

The CNNFA for (a�
1b

�
1) � � � (a

�
sb

�
s) has 2s alphabet symbol occurrences,

and it has exactly 3s crossing edges (see Fig. 4.7). Our crossing edge

complexity presented in Corollary 4.12 is not optimal, but it is, however,

very tight.

CHAPTER 4. ANALYSIS OF THE CNNFA 78

4.2 CNNFA state complexity

In this section we present a bound regarding the number of CNNFA states.

Every CNNFA state must be a forest node which is touched by crossing

edges. The number of CNNFA states is no greater than the number of

the forest nodes. For a regular expression R with s alphabet symbol oc-

currences, there are at most 3s forest nodes (including the start state q0).

However, not all the forest nodes are touched by crossing edges. Moreover,

forests shrink if subexpressions of R do not accept the empty string. The

CNNFA for a1 � � � as has exactly s + 1 forest nodes. We shall show in the

next theorem that excluding the start state, there are at most (5s � 2)=2

forest nodes touched by crossing edges. For convenience, we call those forest

nodes touched by crossing edges state nodes.

Theorem 4.13 For any regular expression R with s alphabet symbol oc-

currences, except the start state q0, there are at most (5s�2)=2 state nodes

in CNNFA cnnfaR.

Proof: We shall prove our theorem by building forests of CNNFA cnnfaR

�rst, adding edges in relaxed CNNFA cnnfa 0
R to forests gradually, perform-

ing necessary promotion transformation to convert cnnfa 0
R into cnnfaR,

and showing that the number of state nodes (excluding the start state q0)

is bounded by (5s� 2)=2.

Step 1: adding product edges: Because there are at most s� 1 product

CHAPTER 4. ANALYSIS OF THE CNNFA 79

edges, there are at most 2s � 2 state nodes.

Step 2: adding left star edges: Consider each left start edge [FJ�; IJ�] in

cnnfa 0�R. If J�jK is a subexpression of R, then [FJ�; IJ�] 2 cnnfa�R; and

we regard [FJ� ; IJ�] as if it were a \product" edge with respect J� and K.

If J�K is a subexpression of R, we then pack [FJ�; IJ�] and [FJ�; IK] into

[FJ�; IJ�K] (see Fig 4.2), and regard promoted edge [FJ�; IJ�K] as if it were

a \product" edge with respect J� and K. After we add all the left star

edges, there are at most s � 1 \product" edges. Therefore, there are at

most 2s� 2 state nodes.

Step 3: adding right star edges: Consider each right star edge [FK�; IK�]

in cnnfa 0�R. If J jK� is a subexpression of R, and if J is not star-top, then

we treat right star edge [FK�; IK�] 2 cnnfa�R as if it were a \product" edge

with respect to J and K�. If JK� is a subexpression of R, and if J is not

star-top, then we can pack [FK�; IK�] and [FJ ; IK�] into [FJK�; IK�] (see Fig

4.3), and treat promoted edge [FJK�; IJK�] as if it were a \product" edge

with respect J and K�. Now there are still at most s� 1 \product" edges.

Therefore, there are at most 2s� 2 state nodes.

The case that J�jK�, J�K� or R = K� is a subexpression is more

complicated. The right star edge [FK�; IK�] is in cnnfa�R, and it seems

that adding this right star edge to forests increases the number of state

nodes by 2. But if regular expressionK� contains only one alphabet symbol

occurrence, then both FK� and IK� are denoted by the same forest node.

CHAPTER 4. ANALYSIS OF THE CNNFA 80

Therefore, at most one forest node is newly touched by star edge [FK�; IK�].

If K� contains more than one alphabet symbol occurrence, then we shall see

that adding [FK� ; IK�] to forests only increases the number of state nodes

by one because there always exists a node which is touched by two distinct

crossing edges.

Consider the case that K� contains more than one alphabet symbol

occurrence. Then, after eliminating stars at the top of K�, and without loss

of generality after renaming, we assume that it is K. Regular expression

K is either K1K2 or K1jK2, for some regular expressions K1 and K2. If

nullK = f�g, then FK = FK1
[FK2

and IK = IK1
[IK2

. By disjointness of

cnnfa�, there is no \product" edge in cnnfa�R with respect to K1 and K2.

As a result, we can regard star edge [FK�; IK�] as if it were a \product"

edge with respect to K1 and K2.

IfK contains more than one alphabet symbol occurrence, and if nullK 6=

f�g, then there must be a path from the root to a leaf in the parse tree of

K such that all the subexpressions in this path do not accept the empty

string. If subexpression K1jK2 is in the path, for some regular expressions

K1 and K2, then there is no \product" edge with respect to K1 and K2

because neither K1 nor K2 can be star-top (otherwise, nullK1jK2
= f�g).

Therefore, we regard star edge [FK�; IK�] as if it were a \product" edge

with respect to K1 and K2.

Consider the case that each subexpression in the path discussed is either

CHAPTER 4. ANALYSIS OF THE CNNFA 81

of the form K1K2 or an alphabet symbol occurrence. There is at least one

F-set or I-set node denoting the F-set or I-set of a subexpression in this

path touched by two crossing edges. Adding right star edge [FK�; IK�] to

forests increases the number of state nodes by one. Before we continue our

argument, we need to develop the following technical lemma.

Lemma 4.14 If there is a subexpression in the path discussed of the form

(K1K
�
2)K3 or K3(K�

2K1), and if K3 is not star-top, then there is a forest

node touched by two crossing edges.

Proof: Note that subexpressionK1 cannot be star-top since nullK is empty.

Form the �gure below, the node denoting FK1K
�

2
is touched by two crossing

edges.

K 2
*K 1 K3

K 2
* K 3K 1()

K 1 K 2
* K 3

promoted edge
product edge

The I-set node denoting IK�

2
K1

is also touched by two crossing edges.

CHAPTER 4. ANALYSIS OF THE CNNFA 82

K 1K 2
*K3

K 3 K 2
* K 1

K 1K 2
*K 3 ()

promoted edge

product edge

ut

Consider a parse tree of K shown by Fig. 4.8. The discussed path goes

through the left child of K �rst. Since [FK�; IK�] 2 cnnfa�R, both nodes

denoting FK and IK are touched crossing edges. If the right subexpression

of K K1;1 is star-top, and if K is J1;1K1;1, for some regular expression J1;1,

then promoted edge [FK; IK1;1
] is also in cnnfa�R. Therefore, F-set node

denoting FK is touched by two crossing edge. If K1;1 is not star-top, and if

K1;i is star-top, for some i, 1 < i � n1, then there exists some j, 1 < j < n1,

such that Kj�1 is not star-top, but Kj is. By Lemma 4.14, an F-set node

is touched by two crossing edges. If all K1;i's are not star-top, 1 � i � n1,

then the F-set node denoting FK2
has an outgoing edge pointing to the I-set

node denoting IK1;n1
. Since J1;1; � � � ; J1;n1�1 andK2 do not accept the empty

string, IK = IK2
. Hence, the right star edge [FK�; IK�] touches the node

denoting IK2
. If K2 is an alphabet symbol, then the F-set node denoting

FK2
and the I-set node denoting IK2

are identical, and it is touched by two

CHAPTER 4. ANALYSIS OF THE CNNFA 83

K1K=

K3

K1,1

K2

2,1J

J
-1n2, 2

K2,1

K2,2

K n2, 2
J 3,1

K3,1
K3,2

K n3, 3

J
-1n3, 3

n1 -1
J1,

1,1J

1,2K

n
1

K1,

a

Figure 4.8: Non-null Path

CHAPTER 4. ANALYSIS OF THE CNNFA 84

distinct crossing edges. If K2 is not an alphabet symbol, then we repeat

the previous argument from K2 alone the path down to a leaf, and we can

eventually �nd a forest node touched by two crossing edges. The argument

for the other case which the discussed path goes through the right child of

K is similar.

From the discussion above, CNNFA cnnfaR has s� 1 \product" edges,

and these edges touch at most 2s� 2 forest nodes. Though each right star

edge which cannot be regarded as a \product" edge can touch two new

nodes, but adding each of such an edge to forests increases the number of

state nodes only by one. Note that we �nd a node, which is touched by two

crossing edges, denoting an I-set or F-set of a subexpression in the path,

and this path does not go through a star-top subexpression. Every such

node can never be found twice.

Similar to Theorem 4.11, there are at most (s + 1)=2 right star edges

which can not be regarded as \product" edges. Therefore, excluding the

start state q0 but counting the I-set node denoting IR, there are at most

(5s � 2)=2 state nodes. ut

Corollary 4.15 For any regular expression R with s alphabet symbol oc-

currences, there are at most 5s=2 CNNFA states and (10s � 5)=2 edges.

Proof: By previous Theorem, including the starting state, there are 5s=2

CNNFA states in CNNFA cnnfaR. By Theorem 4.12 and Theorem 3.4,

CHAPTER 4. ANALYSIS OF THE CNNFA 85

a1 as-1 bs-1 as b sb 1

I-forest

F-forest

c0q

Figure 4.9: The CNNFA for ((a�
1b

�
1) � � � (a

�
sb

�
s))c.

there are at most (3s + 1)=2� 1 + (5s � 2)=2 + s� 1 = (10s � 5)=2 edges.

ut

The CNNFA for ((a�
1b

�
1) � � � (a

�
sb

�
s))c is shown in Fig. 4.9. Regular ex-

pression ((a�
1b

�
1) � � � (a

�
sb

�
s))c contains 2s+1 occurrences of alphabet symbol,

and the CNNFA for ((a�
1b

�
1) � � � (a

�
sb

�
s))c is consisted of 5s + 1 states and

10s � 1 edges. This example shows that our theorem gives a very sharp

upper bound for the size of the CNNFA.

CHAPTER 4. ANALYSIS OF THE CNNFA 86

4.3 CNNFA vs. Thompson's NFA

In this section we compare the CNNFA with Thompson's NFA. Let R be a

regular expression of length r with s alphabet symbol occurrences. CNNFA

cnnfaR has at most 5s=2 states and (10s � 5)=2 edges. Thompson's NFA

tnfaR has between r � s() + 1 and 2r states and between r � s() and 4r� 3

edges, where s() is the number of occurrences of parentheses in R. Though s

can be arbitrary smaller than r, s is equal to r in the best case. Nevertheless,

we shall show that cnnfaR is has no more states and edges than tnfaR. Given

any subset V of NFA states, the �(V;�) computation (similar to computing

the �-closure of V in Thompson's NFA) is a fundamental operation in both

acceptance testing and subset construction. The �(V;�) computation takes

O(jV j+ j�(V;�)j) time in cnnfaR, and O(r) time in tnfaR. We shall show

that to compute �(V;�) in cnnfaR fewer nodes and edges are visited. In

another words, the CNNFA is smaller and faster than Thompson's NFA.

The comparison is done by constructing a one-to-many map that maps

states and edges in cnnfaR to states and edges in tnfaR. The CNNFA is

thus smaller than Thompson's NFA. Let VV and EV be the set of states

and edges visited during the �(V;�) computation in cnnfaR. We show

that the images of VV and EV in tnfaR are also visited during the �(V;�)

computation. We consider a larger and slower version of the CNNFA in

this section: the path compression transformation does not eliminate forest

CHAPTER 4. ANALYSIS OF THE CNNFA 87

leaves. We shall brie
y discuss our mapping in the rest of this section.

A state in Thompson's NFA is an important state if it has an outgoing

edge labeled by an alphabet symbol. The tail of an edge labeled by an

alphabet symbol is a transition state. State q0 is �-reachable from state q

if there is a �-path from q to q0, and edge [q0; q00] is �-reachable from state

q if q0 is �-reachable from q.

There is a one-to-one correspondence between leaves in cnnfaR and

transition states in tnfaR. For each alphabet symbol occurrence a in R,

the forest node denoting fag is mapped to the �nal state in tnfaa. For

convenience, for each alphabet symbol occurrence a, we use va to denote

the forest node denoting fag, and usemapping(va) to denote the �nal state

of tnfaa.

a

TNFA

a

CNNFA

mapping

Set fmapping(va) : a 2 IRg is the set of transition states which are reach-

able from the start state by paths spelled alphabet symbols (strings of

length 1) in tnfaR, and set fmapping(va) : a 2 FRg is the set V of transi-

tion states such that the �nal state of tnfaR is �-reachable from every state

in V . For simplicity, we also use FR and IR to denote sets of transition

states fmapping(va) : a 2 FRg and fmapping(va) : a 2 IRg respectively.

CHAPTER 4. ANALYSIS OF THE CNNFA 88

The central idea of our mapping is as follows. If an F-set (respectively

I-set) node denoting FJ (respectively IJ) is visited during the �(V;�) com-

putation in CNNFA cnnfaR , then the �nal state (respectively start state)

of tnfaJ is also visited in tnfaR. Therefore, for each internal F-set node v

denoting FJ in cnnfaR, we choose a state v0 in tnfaR (perhaps outside of

tnfaJ) as the image of v such that v0 is �-reachable from every states in FJ

(v0 is not necessary to be �-reachable from the �nal state of tnfaJ). As to

internal I-set node v denoting IJ in cnnfaR, we choose a state v0 in tnfaJ

as the image of v, where v0 is reachable from the start state of tnfaJ by a

path spelling a string of length one.

For each tree or crossing edge e originating from F-set node v denoting

FJ , we choose a set E of edges in tnfaR (perhaps outside of tnfaJ) such that

for each state v0 in FJ there is at least one edge e0 in E which is �-reachable

from v0. Consider a tree edge e = [v; v0] in the I-forest, where I-set node v

denotes IJ . We choose an edge e0 in tnfaJ as the image of e such that e0

is �-reachable from the start state of tnfaJ . In the way that we construct

a mapping, if our mapping is one-to-many, then the CNNFA is faster than

Thompson's NFA.

In the following, we present an inductive algorithm to map a tail ma-

chine cnnfaTR to a Thompson's NFA tnfaR. To extend the domain of our

mapping to cnnfaR is straightforward. We assume that regular expressions

are not �-expressions. We shall use the word \unassigned" to describe

CHAPTER 4. ANALYSIS OF THE CNNFA 89

states and edges in Thompson's NFA which are not in the range of our

mapping. We use �gures to describe our mapping with a convention that

dotted circles and lines are unassigned states and edges respectively. In

each inductive step of our algorithm, the following invariants hold.

Invariant 1: If nullR is empty, then all the states and edges in cnnfaTR are

mapped. The start state q0 of tnfaR and one edge which is �-reachable

from q0 are unassigned.

Invariant 2: If R is a star-top regular expression, then all the states and

edges in cnnfaTR are mapped. In addition, tree edges connecting nodes

denoting FR and IR are pre-mapped. By tree edge e connecting F-set

node v, we mean that v is the origin of e, and tree edge connects I-set

node v if e reaches v. Beside of the start state and the �nal state,

one state and two edges both of which are �-reachable from the start

state in tnfaR are unassigned.

Invariant 3: If R is not star-top, but if nullR = f�g, then all the states

and edges in cnnfaTR except nodes v1 and v2 denoting FR and IR

respectively, are mapped. Except the start state and the �nal state,

one state and three edges both of which are �-reachable from the start

state are unassigned.

The R = J� Case

Consider the case where nullJ is empty. By Invariant 1, we need to map

CHAPTER 4. ANALYSIS OF THE CNNFA 90

the star edge with respect to J� and tree edges connecting nodes denoting

FJ and IJ to some proper unassigned edges in tnfaJ� only. The following

�gure shows how the mapping is arranged.

star edge

J

I-set edge for J*

F-set edge for J*

Consider the case nullJ = f�g. Without loss of generality, we assume that

J is not star-top. In addition to the assignment for the star edge, we need

to map forest nodes denoting FJ and IJ , and tree edges connecting them.

The assignment �gure below shows we have at least three states and four

edges unassigned.

star edge

J

I-set node and edge for J*

F-set node and edge for J*

CHAPTER 4. ANALYSIS OF THE CNNFA 91

The R = J jK Case

We discuss two cases only. If J � �, and if K 6� �, then from the �gure

below, �ve states and four edges are unassigned.

λ

K

I-set edge for K F-set edge for K

Consider the case in which both J and K are not equivalent to the empty

string �, nullJ is empty, and nullK = f�g. We need to map the tree edges

connecting to nodes denoting FJ and IJ only. By Invariant 2 and 3, tnfaK

has at least two states and three edges unassigned when we map cnnfaTK to

tnfaK. The assignment shown below indicates that we have six states and

�ve edges unassigned.

F-set edge for J

J

K

I-set edge for J

CHAPTER 4. ANALYSIS OF THE CNNFA 92

The R = JK case

Since �R � R� � R, for any regular expression R, we assume neither J

nor K is a �-expression. The mapping for the case in which both nullJ and

nullK are empty is simple.

product edge

J K

The following �gure shows how the mapping is assigned for the case in

which nullK is empty, and J is not star-top, but nullJ = f�g. We have

FR = FK, and IR = IJ [IK. We need to map the product edge [FJ ; IK],

the F-set node denoting FJ , I-set node v denoting IR, and the tree edge

originating from v to the I-set node denoting IK only. The mapping for

the case where nullJ is empty, and K is not star-top, but nullK = f�g is

similar.

product edge

F-set node for J

I-set edge for K

I-set node for JK

J K

The following �gure shows the mapping for the case where both J andK are

CHAPTER 4. ANALYSIS OF THE CNNFA 93

not star-top, but they accept the empty string. We have three unassigned

states and three unassigned edges.

product edge

F-set node and edge for J

J K

I-set node and edge for K

The mapping for the case in which J is star-top, and K is not star-top, but

nullK = f�g is shown below. The edge that is previously assigned as the

image of star edge [FJ ; IJ] becomes the image of promoted edge [FJ ; IJK].

We have three states and three edges unassigned.

promoted edge

I-set node and edge for K

KJ

I-set edge for JKI-set node for JK

Consider the case such thatK is star-top, and J is not star-top, but nullJ =

f�g. We have two edges in tnfaR serving as images of promoted edge

[FJK; IK]. We assign the mapping for F-set node denoting FJK and the

CHAPTER 4. ANALYSIS OF THE CNNFA 94

tree edge originating from it. The edge previously assigned as the image of

tree edge of the node denoting IK becomes the image of the tree edge of the

F-set node denoting FJK . From the �gure below, we have three unassigned

states and three unassigned edges.

promoted edge
second copy of promoted edge

J

new I-set edge for KF-set node for JK

K

The I-set edge for K become the F-set edge for JK

For those cases not being considered, their mapping are similar to mappings

that we have discussed. We leave them to readers as simple exercises.

Since our map is one-to-many, the CNNFA has fewer states and edges

than Thompson's NFA. For the same reason, computing �(V;�) for any

subset V of NFA states in the CNNFA visits fewer states and edges than

the equivalent computation in Thompson's NFA.

95

Chapter 5

Performance Benchmark

5.1 CNNFA Benchmark

Experiments1 to benchmark the performance of the CNNFA have been

carried out for a range of regular expression patterns against a number of

machines including Thompson's NFA, an optimized form of Thompson's

NFA, and McNaughton and Yamada's NFA[18]. We build Thompson's

NFA according to the construction rules described in Chapter 1. Thomp-

son's NFA usually contains redundant states and �-edges. However, to our

knowledge there is no obvious/e�cient algorithm to optimize Thompson's

NFA without blowing up the linear space constraint. We therefore devise

1The programming language test pattern used in this thesis is ((a j b j c j d j e j f j g

j h j i j j j k j l j m j n j o j p j q j r j s j t j u j v j w j x j y j z) (a j b j c j d e j f j g j h j i j

j j k j l j m j n j o j p j q j r j s j t j u j v j w j x j y j z)* j (1 j 2 j 3 j 4 j 5 j 6 j 7 j 8 j 9 j 0)

(1 j 2 j 3 j 4 j 5 j 6 j 7 j 8 j 9 j 0)* j [j] j (j) j while j for j struct j if j do)

CHAPTER 5. PERFORMANCE BENCHMARK 96

pattern TNFA TNFA opt. MYNFA
(abc � � �) 75% slower 55% slower 75% slower
(ajbj � � �)� 12 times faster 2 times faster 50% faster
((aj�)(bj�) � � � �)� 2 times faster 25% faster 80% slower
((aj�)(bj�) � � �)� 16 times faster 8 times faster 50% faster
((aj�)n�)� comparable 50% slower linearly faster
programming language 7 times faster 50% faster 80% faster

Figure 5.1: The CNNFA acceptance testing speedup ratio

some simple but e�ective transformations that eliminate redundant states

and edges in most of the test cases.

Our acceptance testing experiments show that the CNNFA outperforms

Thompson's NFA, Thompson's NFA optimized, and McNaughton and Ya-

mada's NFA. See Fig. 5.1 for an acceptance testing benchmark summary.

The benchmark summary indicates that the CNNFA is slower than all other

machines for (abc � � �) and (abc � � �)� patterns. According the comparison be-

tween the CNNFA and Thompson's NFA discussed in the last Chapter, this

is an anomalous shortcoming of our current implementation, which will be

eliminated in the next version.

The benchmark for subset construction is more favorable. The CN-

NFA outperforms the other machines not only in DFA construction time

but also in constructed machine size. Subset construction is compared

among the following six starting machines: the CNNFA, Thompson's NFA,

Thompson's NFA optimized, Thompson's NFA using the important-state

heuristic[2], Thompson's NFA using the kernel items heuristic[2], and Mc-

CHAPTER 5. PERFORMANCE BENCHMARK 97

Naughton and Yamada's NFA. See Fig. 1.3 for a high level speci�cation of

the classical Rabin and Scott subset construction for producing a DFA �

from an NFA �.

We implemented the subset construction speci�cation tailored to the

CNNFA and other machines. The only di�erences in these implementa-

tions is in the calculation of �(V;�), where we use the e�cient procedure

described by Theorem 3.3, and in the �-closure step, which is performed

only by Thompson's NFA, Thompson's NFA with important-state heuris-

tic, and Thompson's NFA optimized. The CNNFA achieves linear speedup

and constructs a linearly smaller DFA in many of the test cases. See Fig.

5.2 and 5.3 for a benchmark summary.

The raw timing data is given in the Appendix A. All the tests described

in this thesis are performed on a lightly loaded SUN 3/50 or SUN3/250

server. We used getitimer() and setitimer() primitives [29] to measure

program execution time. It is interesting to note that the CNNFA has a

better speedup ratio on SUN Sparc based computers.

5.2 Cgrep Benchmark

Recently at Columbia University's Theory Day, Aho reported a highly e�-

cient heuristic for deciding whether a given string belongs to the language

denoted by a regular expression, i.e. both string and regular expression are

dynamic(cf. page 128 of [2]). This problem is needed for UNIX tools such

CHAPTER 5. PERFORMANCE BENCHMARK 98

pattern TNFA TNFA ker. TNFA imp.
(abc � � �)� 2 times faster comparable comparable
(ajbj � � �)� quadratic speedup linear speedup linear speedup
(0j1 � � � j9)n 20 times faster 9 times faster 2 times faster
((aj�)(bj�) � � � �)� linear speedup 20% faster linear speedup
((aj�)(bj�) � � �)� quadratic speedup linear speedup linear speedup
(ajb)�a(ajb)n 30 % faster comparable 20 % faster
prog. lang. 19 times faster 3 times faster 3 times faster

pattern TNFA opt. MYNFA
(abc � � �)� comparable comparable
(ajbj � � �)� linear speedup linear speedup
(0j1 � � � j9)n 20% faster 8 times faster
((aj�)(bj�) � � � �)� linear speedup 5% slower
((aj�)(bj�) � � �)� linear speedup linear speedup
(ajb)�a(ajb)n comparable comparable
prog. lang. 20% faster 3 times faster

Figure 5.2: The CNNFA subset construction speedup ratio

CHAPTER 5. PERFORMANCE BENCHMARK 99

pattern TNFA TNFA ker. TNFA imp.
(abc � � �)� comparable comparable comparable
(ajbjc � � �)� linearly smaller linearly smaller comparable
(0j1j � � � 9)n 200 times smaller 10 times smaller comparable
((aj�)(bj�) � � � �)� 3 times smaller comparable comparable
((aj�)(bj�) � � �)� linearly smaller linearly smaller comparable
(ajb)�a(ajb)n 4 times smaller comparable comparable
prog. lang. 4 times smaller 4 times smaller comparable

pattern TNFA opt. MYNFA
(abc � � �)� comparable comparable
(ajbjc � � �)� comparable linearly smaller
(0j1j � � � 9)n comparable 10 times smaller
((aj�)(bj�) � � � �)� comparable comparable
((aj�)(bj�) � � �)� comparable linearly smaller
(ajb)�a(ajb)n comparable comparable
prog. lang. comparable 4 times smaller

Figure 5.3: DFA size improvement ratio starting from the CNNFA

as egrep. Aho's heuristic constructs an NFA �rst, and subsequently builds

a DFA piecemeal as the input string is scanned from left to right. There are

two popular egreps currently in use. One is UNIX egrep, and the other is

GNU e?grep[12] from the Free Software foundation. Both UNIX egrep and

GNU e?grep are based on McNaughton and Yamada's NFA, and use Aho's

heuristic. Using Aho's heuristic, we implement a UNIX egrep compatible

software based on the CNNFA called cgrep. Benchmarks show substantial

computational improvement of cgrep against competing softwares { the

UNIX egrep and the GNU e?grep.

In contrast to the current version, an old version of UNIX egrep con-

CHAPTER 5. PERFORMANCE BENCHMARK 100

structs full DFA's from McNaughton and Yamada's NFA's �rst, and per-

forms acceptance testing in DFA's. For clarity, we call it egrep2. To demon-

strate the performance of the CNNFA, we also build a corresponding version

of cgrep cgrep2, which also builds DFA's and performs acceptance testing

in DFA's. Experiments have been carried out to compare the performance

of cgrep, cgrep2, egrep, egrep2 and e?grep. We measured the NFA con-

struction, DFA construction time (cgrep2 and egrep2 only), and on-line

simulation time (Aho's heuristic) to benchmark this family of egrep. Not

surprisingly, in NFA and DFA construction, cgrep is at least one order of

magnitude faster than the other egreps. For the programming language

test pattern, cgrep is 5.2 times faster than egrep, and 9 times faster than

e?grep in NFA construction. Cgrep2 is 30 times faster than egrep2 in DFA

construction. Cgrep is 50% faster than egrep, and 3.14 times than e?grep

in on-line simulation. See Fig. 5.4 for a benchmark summary. The bench-

mark was performed on a SUN 3/50. The cgrep source code is listed in

Appendix B. The benchmark raw timing data are found in Appendix C.

CHAPTER 5. PERFORMANCE BENCHMARK 101

a1 � � � an �(a1j � � � jan)��

length 50 100 150 200 50 100 150 200
NFA egrep/cgrep 1 3 3.5 4 2.3 5.5
NFA e?grep/cgrep 7 17 14.5 14.3 4.7 8
DFA egrep2/cgrep2 n/a 15 15 26.5 n/a 21
simu egrep/cgrep n/a 10 21 12.3 n/a 4
simu e?grep/cgrep n/a 28 42 19.7 n/a 247

�((a1b1)? � � � (anbn)?)� �((a1b1)? � � � (anbn)?)��

length 50 100 150 200 50 100 150 200
NFA egrep/cgrep 3 4.6 7.6 8.8 4.8 8.8 17.4 21
NFA e?grep/cgrep 9 15.4 31.2 43.3 10.8 20.1 45.3 65.2
DFA egrep2/cgrep2 8.3 12.3 13 16.2 8 21 40 31
simu egrep/cgrep 4.1 7.2 133 205 7 20 38 33
simu e?grep/cgrep 29.6 48.4 83.8 96.2 40 161 433 459

�((a1b1)j � � � j(anbn))�� (0j � � � j9)n(0j � � � j9)�

length 50 100 150 200 50 100 150 200
NFA egrep/cgrep 2.33 6.5 7.5 10.9 3 4.3 6.3 7.1
NFA e?grep/cgrep 5 9.4 8.3 11 6.3 5.8 6.9 6.6
DFA egrep2/cgrep2 n/a 21 13.3 61 n/a 31 33.5 38.7
simu egrep/cgrep 6 18 18.5 29 1 8 7 12
simu e?grep/cgrep 42 163 222 461.5 37 372 529 1155

Figure 5.4: Egreps Benchmark Summary

102

Chapter 6

More Optimization Techniques

In this Chapter, we present more optimization techniques for the CNNFA.

The tree contraction transformation is used to construct even smaller CN-

NFA's. Meyer proposes an NFA/DFA hybrid machine in order that mem-

bership testing for string x against regular expression R can be done in

O(jxjjRj= log jxj) bit-vector operations. We show how to adopt the CN-

NFA to Meyer's algorithm. We also show how to construct smaller DFA's

from the CNNFA by using an observation used in [2] without increasing

time and space complexities.

6.1 Tree Contraction

The tree contraction transformation is like the inverse of packing. It works

as follows: (1) when an internal F-forest node n has k1 outgoing edges and

k2 incoming edges, and if k1k2 � k1 + k2, then we can replace node n and

CHAPTER 6. MORE OPTIMIZATION TECHNIQUES 103

F-forest F-forestI-forest I-forest

F-forest F-forestI-forest I-forest

Figure 6.1: Tree contraction

the k1+k2 edges incident to n by k1k2 edges (see Fig. 6.1); and (2) when an

internal I-forest node n has k1 incoming edges and k2 outgoing edges, and

if k1k2 � k1+k2, then we can replace node n and the k1+k2 edges incident

to n by k1k2 edges (see Fig. 6.1). After applying tree contraction to the

CNNFA in Fig. 3.12, one I-forest node is eliminated (see Fig. 6.2). Fig.

6.2 illustrates a CNNFA improved by tree contraction for regular expression

(ajb)�abb. It contains 5 states and 6 edges in contrast to the 9 states and

14 edges found in the MYNNFA of Fig. 3.3.

6.2 A CNNFA/DFA Hybrid Machine

Meyer [19] shows an O(jxjjRj= log jxj) space and time acceptance testing

algorithm for regular expression R and string x. He uses a hybrid of NFA

CHAPTER 6. MORE OPTIMIZATION TECHNIQUES 104

a(| b) a b b*

I F

I-forest

F-forest

Figure 6.2: An CNNFA equivalent to regular expression (ajb)�abb improved
by tree contraction

and DFA to achieve this new resource bound. More precisely, he divides a

Thompson's NFA intoO(jRj= log jxj) modules, and replaces each module by

a DFA. In this section we show how to adopt the CNNFA to his algorithm.

Starting from the CNNFA, his algorithm is simpler than starting from

Thompson's NFA. Our CNNFA/DFA hybrid machine is a constant factor

faster than Meyer's machine.

Given a regular expression R, Meyer �rst decomposes the parse tree TR

for R into modules. Similarly, we partition edges in TR into sets, and the

subgraph induced by each edge set is anO(k)-size subtree, for some constant

k to be determined later. We call each induced subgraph a module. Each

module is a parse tree { if a node has a child, then it has all of its children.

All the modules except the one rooted at the root of TR have between

CHAPTER 6. MORE OPTIMIZATION TECHNIQUES 105

.

.

c*

|

a b

*

|

d e

*

.

f g

|

M M M

M

2 3 4

1

Figure 6.3: A k = 3 partition of TR for R = ((ajb)�c)((dje)�(f jg)�).

bk=2c+ 1 and k leaves. Hence, there are at most O(jRj=k) modules. Each

module Mi corresponds to a subexpression Ri of regular expression R. Fig

6.3 shows a partition of the parse tree for ((ajb)�c)((de)�(f jg)�) with k = 3.

Let us consider a version of the relaxed CNNFA cnnfa 0
R which is the

same as we describe in Chapter 4 except without applying path compres-

sion. According to a decomposition of TR, we decompose cnnfa 0
R into

modules. Each module Mi directly corresponds to a collection of F-trees

and I-trees, and we call the corresponding F-trees and I-trees the F-module

FMi and I-module IMi of Mi respectively. Fig 6.4 shows the F-module and

I-module of M3 in Fig. 6.3. We also partition crossing edges into modules.

CHAPTER 6. MORE OPTIMIZATION TECHNIQUES 106

| * | |(() () (()))*a b c d e f g *

FM

IM

3

3

Figure 6.4: A partition of cnnfa 0�R for R = ((ajb)�c)((dje)�(f jg)�).

Each edge module EMi contains all the edges [F; I] originating from a node

in FMi to a node in IMi.

Considering a module Mi representing subexpression Ri, let

Mi;1; � � �Mi;il be all the modules such that their roots are leaves in Mi,

and Ai denote the set of alphabet symbol occurrences inMi. Consider each

crossing edge [F; I] in EMi. Following the CNNFA construction, I-set I

is a subset of set Ai [IRi;1
[� � � IRi;il

, and moreover, if I has a non-empty

intersection with Ii;m, 1 �m � il, then Ii;m � I. Thereby, we can construct

two functions

reach Ai : P(Ai [fFRi;1
� � �FRi;il

g) ! P(Ai) and

CHAPTER 6. MORE OPTIMIZATION TECHNIQUES 107

reach Ii : P(Ai [fFRi;1
� � �FRi;il

g)! P(fIRi;1
� � � IRi;il

g)

to replace edge module EMi in an obvious way, where P(S) denotes

the power set of set S. Using an O(k)-bit vector to represent each set

in P(Ai [fFRi;1
� � �FRi;il

g), we implement each reach Ai function as an

O(2kj�j) size table of O(k)-bit vectors, and implement each reach Ii func-

tion as an O(2k) size array of I-set node lists. It is not hard to see that

we can perform the membership testing for string x against regular ex-

pression R in a CNNFA/DFA hybrid machine in O(jxjjRj=k) time. Choos-

ing k = log jxj, our CNNFA/DFA hybrid machine uses the same resource

bounds as Meyer's but simpler and faster.

6.3 Even smaller DFA construction

The �-closure is an important mechanism to construct a smaller DFA in

Rabin and Scott's subset construction algorithm. However, the �-closure is

not applicable to both the CNNFA andMcNaughton and Yamada's NFA. In

lack of �-closure, sometimes the constructed DFA is larger when starting

from the CNNFA or McNaughton and Yamada's NFA. Fig. 6.5 shows

DFA's which are constructed from various NFA's. DFA's constructed from

both the CNNFA and McNaughton and Yamada's NFA are larger than an

equivalent DFA constructed from Thompson's NFA using important state

heuristic.

The reason that larger DFA's constructed from the CNNFA (or from

CHAPTER 6. MORE OPTIMIZATION TECHNIQUES 108

q0
a

a

b

c b

c

a

{a}

{c}

{b}

from MYNFA

q0

q0

{a,b,c}

a,b,c
a

{a}

a

b,c

b,c

a

from CNNFA

{b,c}a

b

c

a

from TNFA using important state heuristic

Figure 6.5: DFA's equivalent to (a(bjc)�)�

CHAPTER 6. MORE OPTIMIZATION TECHNIQUES 109

McNaughton and Yamada's NFA) is that if V is the NFA state set denoted

by a DFA state in a DFA from the CNNFA, then the corresponding DFA

state in the DFA from Thompson's NFA using important state heuristic

denotes the set �(V;�) (by the e�ect of �-closure). There are cases that

DFA states d1 and d2 respectively denote NFA state sets V1 and V2 which

are not equal; but if �(V1;�) = �(V2;�), then d1 and d2 are equivalent DFA

states.

To overcome the shortcomings, we incorporate this observation into the

subset construction algorithm described in Fig. 1.3. Fig. 6.6 shows a new

subset construction algorithm for the CNNFA. In our algorithm, function

� is a single value map

f[V; �(V;�)] : d is a DFA state denoting NFA state set V g;

and ��1 is the inverse of function �. This new algorithm uses the same time

and space resource bounds as the old algorithm, but it produces DFA's as

small as DFA's constructed from Thompson's NFA using important state

heuristic.

CHAPTER 6. MORE OPTIMIZATION TECHNIQUES 110

� := ;
workset := ffq0gg
� =: f[fq0g; �(fq0g;�)]g
while 9V 2 workset do

workset := workset - fV g
for each symbol a 2 � and set of states B = fx 2 �(V)jA(x) = ag,

where B 6= ; do
if B belongs to the domain of � or to workset then

�(V; a) := B
else if (C := �(B;�)) belongs to the range of �

�(V; a) := ��1(C)
else

�(V; a) := B
workset := workset [fBg
� := � [f[B;C]g

end if
end for

end while

Figure 6.6: Space saving subset construction for the CNNFA

111

Chapter 7

Conclusion

We propose the CNNFA as a better alternative for the classical Thompson's

NFA and McNaughton and Yamada's NFA. Theoretical analysis and con-

�rming empirical evidence demonstrate that our proposed CNNFA leads to

a substantially more e�cient way of turning regular expressions into NFA's

and DFA's than other approaches in current use.

The CNNFA is one order of magnitude smaller than the McNaughton

and Yamada's NFA; the CNNFA is linearly faster than McNaughton and

Yamada's NFA in acceptance testing; and DFA construction starting from

the CNNFA can be quadratically faster than when starting from Mc-

Naughton and Yamada's NFA. The superiority of the CNNFA is demon-

strated by benchmarks showing that cgrep is dramatically faster than the

McNaughton and Yamada's NFA based egreps { the UNIX egrep and the

GNU e?grep.

CHAPTER 7. CONCLUSION 112

Our benchmark result con�rms theoretical analysis that the CNNFA

is smaller but faster than Thompson's NFA and its variants. Thompson's

NFA contains redundant states and edges. To optimize Thompson's NFA

deep global analysis is often needed. In contrast, the CNNFA is e�ciently

constructed by a simple method, and can be regarded as an optimized

Thompson's NFA. The �-closure step is crucial in DFA construction when

starting from Thompson's NFA, but it is time consuming. Most of the

�-closure operations are often omitted when starting from the CNNFA be-

cause the path compression transformation is able to eliminate NFA states.

In the following, we list a number of future research directions. Though

the CNNFA is faster than popular NFA's, we believe that the performance

of the CNNFA can be improved by a better implementation. Tree con-

traction is a technique to reduce the size of the CNNFA. However, the

e�ectiveness of tree contraction has not been investigated.

It is worthwhile to investigate optimization techniques for the CNNFA.

Thompson's NFA for regular expression ((a�
1b

�
1) � � � (a

�
sb

�
s))c can be optimized

to the machine illustrated as follows.

a1 b 1 a2 b sas c

λ λ λ λ λ

It consists of 2s + 1 states and 4s edges. The CNNFA (see Fig. 4.9) of

CHAPTER 7. CONCLUSION 113

((a�
1b

�
1) � � � (a

�
sb

�
s))c has 5s + 1 states and 10s � 1 edges. Though we can

further optimize our CNNFA through an ad hoc approach, it is desirable

to devise more formal and general techniques to optimize the CNNFA. It

would also be interesting to obtain a sharper analysis of the constant factors

in comparing the CNNFA with other NFA's, particularly, Thompson's NFA

optimized.

One of the merits of the CNNFA is its structure. We utilize structure

properties of the CNNFA to analyze space and time complexities. In con-

trast to the spaghetti structure of Thompson's NFA, the CNNFA is well

organized, and has no cycles. Comparing to Thompson's NFA, it is eas-

ier to adopt the CNNFA to Meyer's hybrid machine [19] (cf. Section 6.2).

The CNNFA also directly corresponds to the star normal form notation

for regular expressions [6]. It would be worthwhile to re-examine classical

problems from the CNNFA point of view.

The choice between using NFA's or DFA's for acceptance testing of

strings against regular expressions is a space/time tradeo�; however, if a

DFA is the choice, then a min-state DFA is more pro�table because a min-

state DFA is as fast as a DFA, but it can be exponentially smaller. Consider

regular expression R = (ajb)�a(ajb)n(ajb)�. The DFA MR constructed by

subset construction has an exponential number of states; but the min-state

DFA equivalent to MR has only a linear number of states. DFA minimiza-

tion algorithms currently in use are o�-line [13,24]. We have to construct

CHAPTER 7. CONCLUSION 114

the whole DFA before minimization. It seems that an on-line version of

min-state DFA construction algorithm uses less auxiliary space; but unfor-

tunately, it uses exponential auxiliary space at the worst case. Consider

another regular expressionR0 = (ajb)�a(ajb)�(ajb)n which is similar toR and

equivalent to R. DFA MR0 constructed by subset construction has only a

linear number of states. It would be interesting to design a small collection

of transformation rules for regular expressions so that DFA's constructed

from transformed regular expressions would not be much larger than their

equivalent min-state DFA's in most of the cases. A better DFA minimiza-

tion implementation also deserves further investigation.

115

Appendix A

The CNNFA Benchmark Data

A.1 NFA Acceptance Testing Benchmark
Timing Data

All tests in this section are performed on a SUN 3/250 server. Benchmark
time is in seconds.

(abc � � �)

length TNFA TNFA opt. CNNFA unopt. CNNFA MYNFA

1000 0.14 0.34 0.58 0.76 0.18

1500 0.20 0.52 1.00 1.18 0.30

2000 0.30 0.74 1.32 1.58 0.42

2500 0.38 0.90 1.60 2.00 0.54

3000 0.44 1.12 2.00 2.44 0.66

4000 0.64 1.54 2.58 3.32 0.84

4500 0.72 1.56 2.78 3.42 0.96

5000 0.70 1.48 2.88 3.56 0.92

APPENDIX A. THE CNNFA BENCHMARK DATA 116

(abc � � �)�

length TNFA TNFA opt. CNNFA unopt. CNNFA MYNFA

10 0.32 0.62 1.10 1.56 0.32

20 0.26 0.60 1.12 1.44 0.34

30 0.28 0.64 1.12 1.42 0.36

40 0.28 0.64 1.08 1.44 0.34

50 0.26 0.64 1.08 1.48 0.38

60 0.28 0.64 1.12 1.50 0.34

70 0.26 0.66 1.10 1.46 0.34

80 0.26 0.64 1.10 1.46 0.32

90 0.28 0.64 1.14 1.46 0.36

100 0.26 0.64 1.10 1.46 0.34

(ajbjc � � �)�

length TNFA TNFA opt. CNNFA unopt. CNNFA MYNFA

10 5.46 1.36 4.20 1.76 0.82

20 10.48 2.18 7.52 2.02 1.38

30 15.70 3.04 10.86 2.18 1.86

40 21.16 3.76 14.28 2.56 2.42

50 26.22 4.60 17.28 2.84 3.00

60 31.62 5.46 22.56 3.12 3.66

70 36.62 6.20 23.94 3.26 4.36

80 42.02 7.12 27.38 3.56 5.22

90 47.94 7.92 30.44 3.90 6.00

100 52.00 8.70 35.10 4.10 6.88

((aj�)n�)�

length TNFA TNFA opt. CNNFA unopt. CNNFA MYNFA

10 7.14 4.30 5.50 8.10 3.96

20 12.94 7.14 9.14 13.76 12.14

30 19.90 10.60 13.76 20.74 26.12

40 25.92 12.90 17.06 26.22 42.16

50 31.46 16.82 22.36 34.26 66.54

60 36.10 18.96 24.98 39.78 91.74

70 43.56 22.96 29.54 46.04 127.28

80 51.18 25.96 35.20 53.60 171.02

90 52.66 26.80 35.54 54.24 187.56

100 61.30 31.12 41.00 63.44 248.04

APPENDIX A. THE CNNFA BENCHMARK DATA 117

((aj�)(bj�) � � �)�

length TNFA TNFA opt. CNNFA unopt. CNNFA MYNFA

10 7.08 3.92 4.26 1.94 0.86

20 13.06 7.42 7.60 2.06 1.38

30 19.92 10.96 10.78 2.30 1.92

40 26.32 14.38 14.16 2.52 2.44

50 32.32 18.00 17.34 2.84 3.00

60 37.68 21.66 20.78 3.10 3.66

70 43.82 25.12 24.06 3.24 4.34

80 51.54 28.48 27.78 3.58 5.18

90 57.80 32.08 30.80 3.88 5.90

100 64.56 35.46 33.98 4.06 6.86

((aj�)(bj�) � � ��)�

length TNFA TNFA opt. CNNFA unopt. CNNFA MYNFA

10 4.40 2.82 2.66 3.36 0.68

20 8.08 4.94 4.08 4.86 1.00

30 12.30 7.16 5.50 6.54 1.34

40 16.06 9.22 6.72 7.96 1.64

50 19.22 11.24 8.10 9.34 1.88

60 23.46 13.90 9.80 11.04 2.38

70 27.32 16.18 11.22 12.68 2.84

80 31.90 18.18 12.72 14.34 3.16

90 34.80 19.92 13.64 15.34 3.40

100 38.98 22.04 14.96 18.50 3.78

programming language

98.20 20.50 65.36 13.68 24.46

A.2 DFA Construction Benchmark Data

A.2.1 DFA construction Time

All tests in this section are performed on a SUN 3/50 server. Benchmark
time is in seconds.

APPENDIX A. THE CNNFA BENCHMARK DATA 118

(abc � � �)�

length TNFA TNFA k. TNFA i. TNFA opt. CNNFA MYNFA

25 0.02 0.02 0.02 0.02 0.02 0.00

50 0.06 0.04 0.04 0.04 0.04 0.04

75 0.06 0.04 0.04 0.04 0.06 0.00

100 0.06 0.04 0.06 0.02 0.06 0.06

125 0.08 0.06 0.06 0.06 0.06 0.06

150 0.14 0.08 0.06 0.08 0.08 0.06

175 0.16 0.08 0.10 0.08 0.06 0.06

201 0.20 0.10 0.10 0.10 0.06 0.10

225 0.22 0.10 0.10 0.08 0.10 0.08

250 0.26 0.10 0.14 0.14 0.10 0.10

(ajbjc � � �)�

length TNFA TNFA k. TNFA i. TNFA opt. CNNFA MYNFA

25 0.68 0.14 0.02 0.02 0.02 0.12

50 4.54 0.46 0.08 0.04 0.04 0.42

75 14.72 1.10 0.16 0.08 0.04 0.96

100 34.28 1.78 0.26 0.10 0.04 1.64

125 66.00 2.80 0.40 0.14 0.02 2.28

150 113.26 4.06 0.54 0.18 0.06 3.56

175 178.52 5.52 0.76 0.26 0.06 5.00

200 265.20 7.32 1.00 0.28 0.06 6.26

225 375.88 9.18 1.22 0.38 0.10 8.26

250 514.34 11.28 1.46 0.46 0.10 9.80

(0j � � � j9)n

length TNFA TNFA k. TNFA i. TNFA opt. CNNFA MYNFA

25 1.20 0.5 0.08 0.06 0.06 0.42

50 2.40 0.98 0.22 0.12 0.12 0.88

75 3.64 1.44 0.34 0.16 0.16 1.30

100 4.88 2.00 0.42 0.24 0.20 1.80

125 6.12 2.40 0.54 0.30 0.26 2.26

150 7.36 3.00 0.64 0.36 0.30 2.74

175 8.56 3.46 0.76 0.40 0.34 3.08

200 9.74 4.10 0.84 0.48 0.40 3.58

225 11.10 4.66 0.92 0.50 0.40 3.90

250 12.44 4.94 1.02 0.60 0.52 4.40

APPENDIX A. THE CNNFA BENCHMARK DATA 119

((aj�)(bj�) � � ��)�

length TNFA TNFA k. TNFA i. TNFA opt. CNNFA MYNFA

25 0.22 0.12 0.16 0.14 0.12 0.08

50 1.22 0.28 0.84 0.72 0.28 0.28

75 3.54 0.66 2.66 2.04 0.66 0.64

100 8.02 1.14 5.78 4.48 1.06 1.02

125 15.16 1.72 10.78 8.08 1.68 1.60

150 25.62 2.42 18.00 13.52 2.44 2.28

175 39.88 3.36 28.02 20.84 3.30 3.12

200 59.04 4.52 41.36 30.70 4.24 4.10

225 83.58 5.52 58.26 42.52 5.40 4.94

250 113.68 7.02 79.04 57.92 5.56 5.20

((aj�)(bj�) � � �)�

length TNFA TNFA k. TNFA i. TNFA opt. CNNFA MYNFA

25 0.80 0.14 0.04 0.02 0.02 0.12

50 5.74 0.44 0.08 0.06 0.04 0.42

75 18.74 1.08 0.18 0.12 0.02 0.92

100 43.58 1.82 0.28 0.22 0.04 1.66

125 84.46 2.88 0.44 0.32 0.04 2.44

150 144.50 4.14 0.66 0.46 0.06 3.66

175 228.56 5.60 0.88 0.60 0.08 5.92

200 356.58 9.28 1.24 0.84 0.08 7.76

225 505.66 11.48 1.42 1.04 0.10 10.06

250 668.84 11.42 1.78 1.26 0.08 9.88

APPENDIX A. THE CNNFA BENCHMARK DATA 120

(ajb)�a(ajb)n

length TNFA TNFA k. TNFA i. TNFA opt. CNNFA MYNFA

1 0.02 0.02 0.02 0.02 0.02 0.02

2 0.00 0.00 0.02 0.02 0.02 0.00

3 0.00 0.02 0.02 0.02 0.02 0.02

4 0.06 0.04 0.04 0.04 0.04 0.04

5 0.06 0.06 0.10 0.06 0.08 0.08

6 0.14 0.12 0.12 0.12 0.12 0.08

7 0.30 0.22 0.30 0.26 0.24 0.20

8 0.64 0.48 0.64 0.50 0.46 0.42

9 1.38 0.96 1.22 1.04 1.00 0.90

10 2.76 1.98 2.62 2.14 2.06 2.08

programming language

1.92 0.36 0.32 0.12 0.10 0.34

A.2.2 Constructed DFA Size

For each test pattern, we show the numbers of states and edges in the

constructed DFA. Each DFA state corresponds to a set of NFA states; the

weight of a DFA states is de�ned to be the size of its corresponding NFA

states set. The weight of an edge in a DFA is the sum of the weight of

its origin and tail. DFA construction time is proportional to the node and

edge weight of constructed DFA's.

(abc � � �)�

machine length node no. edge no. node weight edge weight

TNFA 25 26 26 30 28

TNFA k. 25 26 26 26 26

TNFA i. 25 25 25 26 26

TNFA o. 25 25 25 25 25

CNNFA 25 26 26 26 26

MYNFA 25 26 26 26 26

APPENDIX A. THE CNNFA BENCHMARK DATA 121

machine length node no. edge no. node weight edge weight

TNFA 50 51 51 55 53

TNFA k. 50 51 51 51 51

TNFA i. 50 50 50 51 51

TNFA o. 50 50 50 50 50

CNNFA 50 51 51 51 51

MYNFA 50 51 51 51 51

machine length node no. edge no. node weight edge weight

TNFA 75 76 76 80 78

TNFA k. 75 76 76 76 76

TNFA i. 75 75 75 76 76

TNFA o. 75 75 75 75 75

CNNFA 75 76 76 76 76

MYNFA 75 76 76 76 76

machine length node no. edge no. node weight edge weight

TNFA 100 101 101 105 103

TNFA k. 100 101 101 101 101

TNFA i. 100 100 100 101 101

TNFA o. 100 100 100 100 100

CNNFA 100 101 101 101 101

MYNFA 100 101 101 101 101

machine length node no. edge no. node weight edge weight

TNFA 125 126 126 130 128

TNFA k. 125 126 126 126 126

TNFA i. 125 125 125 126 126

TNFA o. 125 125 125 125 125

CNNFA 125 126 126 126 126

MYNFA 125 126 126 126 126

machine length node no. edge no. node weight edge weight

TNFA 150 151 151 155 153

TNFA k. 150 151 151 151 151

TNFA i. 150 150 150 151 151

TNFA o. 150 150 150 150 150

CNNFA 150 151 151 151 151

MYNFA 150 151 151 151 151

APPENDIX A. THE CNNFA BENCHMARK DATA 122

machine length node no. edge no. node weight edge weight

TNFA 175 176 176 180 178

TNFA k. 175 176 176 176 176

TNFA i. 175 175 175 176 176

TNFA o. 175 175 175 175 175

CNNFA 175 176 176 176 176

MYNFA 175 176 176 176 176

machine length node no. edge no. node weight edge weight

TNFA 200 201 201 205 203

TNFA k. 200 201 201 201 201

TNFA i. 200 200 200 201 201

TNFA o. 200 200 200 200 200

CNNFA 200 201 201 201 201

MYNFA 200 201 201 201 201

machine length node no. edge no. node weight edge weight

TNFA 225 226 226 230 228

TNFA k. 225 226 226 226 226

TNFA i. 225 225 225 226 226

TNFA o. 225 225 225 225 225

CNNFA 225 226 226 226 226

MYNFA 225 226 226 226 226

machine length node no. edge no. node weight edge weight

TNFA 250 251 251 255 253

TNFA k. 250 251 251 251 251

TNFA i. 250 250 250 251 251

TNFA o. 250 250 250 250 250

CNNFA 250 251 251 251 251

MYNFA 250 251 251 251 251

(ajbjc � � �)�

machine length node no. edge no. node weight edge weight

TNFA 25 26 650 1650 41574

TNFA k. 25 26 650 26 650

TNFA i. 25 1 25 26 650

TNFA o. 25 1 25 1 25

CNNFA 25 2 50 2 50

MYNFA 25 26 650 26 650

APPENDIX A. THE CNNFA BENCHMARK DATA 123

machine length node no. edge no. node weight edge weight

TNFA 50 51 2550 6425 322524

TNFA k. 50 51 2550 51 2550

TNFA i. 50 1 50 51 2550

TNFA o. 50 1 50 1 50

CNNFA 50 2 100 2 100

MYNFA 50 51 2550 51 2550

machine length node no. edge no. node weight edge weight

TNFA 75 76 5700 14325 1077224

TNFA k. 75 76 5700 76 5700

TNFA i. 75 1 75 76 5700

TNFA o. 75 1 75 1 75

CNNFA 75 2 150 2 150

MYNFA 75 76 5700 76 5700

machine length node no. edge no. node weight edge weight

TNFA 100 101 10100 25350 2540049

TNFA k. 100 101 10100 101 10100

TNFA i. 100 1 100 101 10100

TNFA o. 100 1 100 1 100

CNNFA 100 2 200 2 200

MYNFA 100 101 10100 101 10100

machine length node no. edge no. node weight edge weight

TNFA 125 126 15750 39500 4945374

TNFA k. 125 126 15750 126 15750

TNFA i. 125 1 125 126 15750

TNFA o. 125 1 125 1 125

CNNFA 125 2 250 2 250

MYNFA 125 126 15750 126 15750

machine length node no. edge no. node weight edge weight

TNFA 150 151 22650 56775 8527574

TNFA k. 150 151 22650 151 22650

TNFA i. 150 1 150 151 22650

TNFA o. 150 1 150 1 150

CNNFA 150 2 300 2 300

MYNFA 150 151 22650 151 22650

APPENDIX A. THE CNNFA BENCHMARK DATA 124

machine length node no. edge no. node weight edge weight

TNFA 175 176 30800 77175 13521024

TNFA k. 175 176 30800 176 30800

TNFA i. 175 1 175 176 30800

TNFA o. 175 1 175 1 175

CNNFA 175 2 350 2 350

MYNFA 175 176 30800 176 30800

machine length node no. edge no. node weight edge weight

TNFA 200 201 40200 100700 20160099

TNFA k. 200 201 40200 201 40200

TNFA i. 200 1 200 201 40200

TNFA o. 200 1 200 1 200

CNNFA 200 2 400 2 400

MYNFA 200 201 40200 201 40200

machine length node no. edge no. node weight edge weight

TNFA 225 226 50850 127350 28679174

TNFA k. 225 226 50850 226 50850

TNFA i. 225 1 225 226 50850

TNFA o. 225 1 225 1 225

CNNFA 225 2 450 2 450

MYNFA 225 226 50850 226 50850

machine length node no. edge no. node weight edge weight

TNFA 250 251 62750 157125 39312624

TNFA k. 250 251 62750 251 62750

TNFA i. 250 1 250 251 62750

TNFA o. 250 1 250 1 250

CNNFA 250 2 500 2 500

MYNFA 250 251 62750 251 62750

(0j � � � j9)n

machine length node no. edge no. node weight edge weight

TNFA 25 251 2410 5939 57004

TNFA k. 25 251 2410 251 2410

TNFA i. 25 26 250 251 2410

TNFA o. 25 26 250 26 250

CNNFA 25 26 250 26 250

MYNFA 25 251 2410 251 2410

APPENDIX A. THE CNNFA BENCHMARK DATA 125

machine length node no. edge no. node weight edge weight

TNFA 50 501 4910 12039 118004

TNFA k. 50 501 4910 501 4910

TNFA i. 50 51 500 501 4910

TNFA o. 50 51 500 51 500

CNNFA 50 51 500 51 500

MYNFA 50 501 4910 501 4910

machine length node no. edge no. node weight edge weight

TNFA 75 751 7410 18139 179004

TNFA k. 75 751 7410 751 7410

TNFA i. 75 76 750 751 7410

TNFA o. 75 76 750 76 750

CNNFA 75 76 750 76 750

MYNFA 75 751 7410 751 7410

machine length node no. edge no. node weight edge weight

TNFA 100 1001 9910 24239 240004

TNFA k. 100 1001 9910 1001 9910

TNFA i. 100 101 1000 1001 9910

TNFA o. 100 101 1000 101 1000

CNNFA 100 101 1000 101 1000

MYNFA 100 1001 9910 1001 9910

machine length node no. edge no. node weight edge weight

TNFA 125 1251 12410 30339 301004

TNFA k. 125 1251 12410 1251 12410

TNFA i. 125 126 1250 1251 12410

TNFA o. 125 126 1250 126 1250

CNNFA 125 126 1250 126 1250

MYNFA 125 1251 12410 1251 12410

machine length node no. edge no. node weight edge weight

TNFA 150 1501 14910 36439 362004

TNFA k. 150 1501 14910 1501 14910

TNFA i. 150 151 1500 1501 14910

TNFA o. 150 151 1500 151 1500

CNNFA 150 151 1500 151 1500

MYNFA 150 1501 14910 1501 14910

APPENDIX A. THE CNNFA BENCHMARK DATA 126

machine length node no. edge no. node weight edge weight

TNFA 175 1751 17410 42539 423004

TNFA k. 175 1751 17410 1751 17410

TNFA i. 175 176 1750 1751 17410

TNFA o. 175 176 1750 176 1750

CNNFA 175 176 1750 176 1750

MYNFA 175 1751 17410 1751 17410

machine length node no. edge no. node weight edge weight

TNFA 200 2001 19910 48639 484004

TNFA k. 200 2001 19910 2001 19910

TNFA i. 200 201 2000 2001 19910

TNFA o. 200 201 2000 201 2000

CNNFA 200 201 2000 201 2000

MYNFA 200 2001 19910 2001 19910

machine length node no. edge no. node weight edge weight

TNFA 225 2251 22410 54739 545004

TNFA k. 225 2251 22410 2251 22410

TNFA i. 225 226 2250 2251 22410

TNFA o. 225 226 2250 226 2250

CNNFA 225 226 2250 226 2250

MYNFA 225 2251 22410 2251 22410

machine length node no. edge no. node weight edge weight

TNFA 250 2501 24910 60839 606004

TNFA k. 250 2501 24910 2501 24910

TNFA i. 250 251 2500 2501 24910

TNFA o. 250 251 2500 251 2500

CNNFA 250 251 2500 251 2500

MYNFA 250 2501 24910 2501 24910

((aj�)(bj�) � � ��)�

machine length node no. edge no. node weight edge weight

TNFA 25 27 351 1027 8476

TNFA k. 25 27 351 27 351

TNFA i. 25 27 351 352 2951

TNFA o. 25 27 351 352 2951

CNNFA 25 27 351 27 351

MYNFA 25 27 351 27 351

APPENDIX A. THE CNNFA BENCHMARK DATA 127

machine length node no. edge no. node weight edge weight

TNFA 50 52 1281 3928 65076

TNFA k. 50 52 1281 53 1326

TNFA i. 50 53 1281 1330 22152

TNFA o. 50 52 1281 1328 22151

CNNFA 50 52 1281 53 1326

MYNFA 50 52 1281 53 1326

machine length node no. edge no. node weight edge weight

TNFA 75 77 2881 8703 216676

TNFA k. 75 77 2881 78 2926

TNFA i. 75 78 2881 2930 73227

TNFA o. 75 77 2881 2928 73226

CNNFA 75 77 2881 78 2926

MYNFA 75 77 2881 78 2926

machine length node no. edge no. node weight edge weight

TNFA 100 102 5106 15353 510151

TNFA k. 100 102 5106 103 5151

TNFA i. 100 103 5106 5155 171802

TNFA o. 100 102 5106 5153 171801

CNNFA 100 102 5106 103 5151

MYNFA 100 102 5106 103 5151

machine length node no. edge no. node weight edge weight

TNFA 125 127 7956 23878 992376

TNFA k. 125 127 7956 128 8001

TNFA i. 125 128 7956 8005 333502

TNFA o. 125 127 7956 8003 333501

CNNFA 125 127 7956 128 8001

MYNFA 125 127 7956 128 8001

machine length node no. edge no. node weight edge weight

TNFA 150 152 11431 34278 1710226

TNFA k. 150 152 11431 153 11476

TNFA i. 150 153 11431 11480 573952

TNFA o. 150 152 11431 11478 573951

CNNFA 150 152 11431 153 11476

MYNFA 150 152 11431 153 11476

APPENDIX A. THE CNNFA BENCHMARK DATA 128

machine length node no. edge no. node weight edge weight

TNFA 175 177 15531 46553 2710576

TNFA k. 175 177 15531 178 15576

TNFA i. 175 178 15531 15580 908777

TNFA o. 175 177 15531 15578 908776

CNNFA 175 177 15531 178 15576

MYNFA 175 177 15531 178 15576

machine length node no. edge no. node weight edge weight

TNFA 200 202 20256 60703 4040301

TNFA k. 200 202 20256 203 20301

TNFA i. 200 203 20256 20305 1353602

TNFA o. 200 202 20256 20303 1353601

CNNFA 200 202 20256 203 20301

MYNFA 200 202 20256 203 20301

machine length node no. edge no. node weight edge weight

TNFA 225 227 25606 76728 5746276

TNFA k. 225 227 25606 228 25651

TNFA i. 225 228 25606 25655 1924052

TNFA o. 225 227 25606 25653 1924051

CNNFA 225 227 25606 228 25651

MYNFA 225 227 25606 228 25651

machine length node no. edge no. node weight edge weight

TNFA 250 252 31581 94628 7875376

TNFA k. 250 252 31581 253 31626

TNFA i. 250 253 31581 31630 2635752

TNFA o. 250 252 31581 31628 2635751

CNNFA 250 252 31581 253 31626

MYNFA 250 252 31581 253 31626

((aj�)(bj�) � � �)�

machine length node no. edge no. node weight edge weight

TNFA 25 26 650 2028 50700

TNFA k. 25 26 650 26 650

TNFA i. 25 1 25 26 650

TNFA o. 25 1 25 25 625

CNNFA 25 2 50 2 50

MYNFA 25 26 650 26 650

APPENDIX A. THE CNNFA BENCHMARK DATA 129

machine length node no. edge no. node weight edge weight

TNFA 50 51 2550 7803 390150

TNFA k. 50 51 2550 51 2550

TNFA i. 50 1 50 51 2550

TNFA o. 50 1 50 50 2500

CNNFA 50 2 100 2 100

MYNFA 50 51 2550 51 2550

machine length node no. edge no. node weight edge weight

TNFA 75 76 5700 17328 1299600

TNFA k. 75 76 5700 76 5700

TNFA i. 75 1 75 76 5700

TNFA o. 75 1 75 75 5625

CNNFA 75 2 150 2 150

MYNFA 75 76 5700 76 5700

machine length node no. edge no. node weight edge weight

TNFA 100 101 10100 30603 3060300

TNFA k. 100 101 10100 101 10100

TNFA i. 100 1 100 101 10100

TNFA o. 100 1 100 100 10000

CNNFA 100 2 200 2 200

MYNFA 100 101 10100 101 10100

machine length node no. edge no. node weight edge weight

TNFA 125 126 15750 47628 5953500

TNFA k. 125 126 15750 126 15750

TNFA i. 125 1 125 126 15750

TNFA o. 125 1 125 125 15625

CNNFA 125 2 250 2 250

MYNFA 125 126 15750 126 15750

machine length node no. edge no. node weight edge weight

TNFA 150 151 22650 68403 10260450

TNFA k. 150 151 22650 151 22650

TNFA i. 150 1 150 151 22650

TNFA o. 150 1 150 150 22500

CNNFA 150 2 300 2 300

MYNFA 150 151 22650 151 22650

APPENDIX A. THE CNNFA BENCHMARK DATA 130

machine length node no. edge no. node weight edge weight

TNFA 175 176 30800 92928 16262400

TNFA k. 175 176 30800 176 30800

TNFA i. 175 1 175 176 30800

TNFA o. 175 1 175 175 30625

CNNFA 175 2 350 2 350

MYNFA 175 176 30800 176 30800

machine length node no. edge no. node weight edge weight

TNFA 200 201 40200 121203 24240600

TNFA k. 200 201 40200 201 40200

TNFA i. 200 1 200 201 40200

TNFA o. 200 1 200 200 40000

CNNFA 200 2 400 2 400

MYNFA 200 201 40200 201 40200

machine length node no. edge no. node weight edge weight

TNFA 225 226 50850 153228 34476300

TNFA k. 225 226 50850 226 50850

TNFA i. 225 1 225 226 50850

TNFA o. 225 1 225 225 50625

CNNFA 225 2 450 2 450

MYNFA 225 226 50850 226 50850

machine length node no. edge no. node weight edge weight

TNFA 250 251 62750 189003 47250750

TNFA k. 250 251 62750 251 62750

TNFA i. 250 1 250 251 62750

TNFA o. 250 1 250 250 62500

CNNFA 250 2 500 2 500

MYNFA 250 251 62750 251 62750

(ajb)�a(ajb)n

machine length node no. edge no. node weight edge weight

TNFA 1 5 10 39 83

TNFA k. 1 5 10 9 19

TNFA i. 1 4 9 18 39

TNFA o. 1 4 8 8 16

CNNFA 1 5 10 9 19

MYNFA 1 5 10 9 19

APPENDIX A. THE CNNFA BENCHMARK DATA 131

machine length node no. edge no. node weight edge weight

TNFA 2 9 18 89 183

TNFA k. 2 9 18 21 43

TNFA i. 2 8 18 44 94

TNFA o. 2 8 16 20 40

CNNFA 2 9 18 21 43

MYNFA 2 9 18 21 43

machine length node no. edge no. node weight edge weight

TNFA 3 17 34 205 415

TNFA k. 3 17 34 49 99

TNFA i. 3 16 36 104 220

TNFA o. 3 16 32 48 96

CNNFA 3 17 34 49 99

MYNFA 3 17 34 49 99

machine length node no. edge no. node weight edge weight

TNFA 4 33 66 469 943

TNFA k. 4 33 66 113 227

TNFA i. 4 32 72 240 504

TNFA o. 4 32 64 112 224

CNNFA 4 33 66 113 227

MYNFA 4 33 66 113 227

machine length node no. edge no. node weight edge weight

TNFA 5 65 130 1061 2127

TNFA k. 5 65 130 257 515

TNFA i. 5 64 144 544 1136

TNFA o. 5 64 128 256 512

CNNFA 5 65 130 257 515

MYNFA 5 65 130 257 515

machine length node no. edge no. node weight edge weight

TNFA 6 129 258 2373 4751

TNFA k. 6 129 258 577 1155

TNFA i. 6 128 288 1216 2528

TNFA o. 6 128 256 576 1152

CNNFA 6 129 258 577 1155

MYNFA 6 129 258 577 1155

APPENDIX A. THE CNNFA BENCHMARK DATA 132

machine length node no. edge no. node weight edge weight

TNFA 7 257 514 5253 10511

TNFA k. 7 257 514 1281 2563

TNFA i. 7 256 576 2688 5568

TNFA o. 7 256 512 1280 2560

CNNFA 7 257 514 1281 2563

MYNFA 7 257 514 1281 2563

machine length node no. edge no. node weight edge weight

TNFA 8 513 1026 11525 23055

TNFA k. 8 513 1026 2817 5635

TNFA i. 8 512 1152 5888 12160

TNFA o. 8 512 1024 2816 5632

CNNFA 8 513 1026 2817 5635

MYNFA 8 513 1026 2817 5635

machine length node no. edge no. node weight edge weight

TNFA 9 1025 2050 25093 50191

TNFA k. 9 1025 2050 6145 12291

TNFA i. 9 1024 2304 12800 26368

TNFA o. 9 1024 2048 6144 12288

CNNFA 9 1025 2050 6145 12291

MYNFA 9 1025 2050 6145 12291

machine length node no. edge no. node weight edge weight

TNFA 10 2049 4098 54277 108559

TNFA k. 10 2049 4098 13313 26627

TNFA i. 10 2048 4608 27648 56832

TNFA o. 10 2048 4096 13312 26624

CNNFA 10 2049 4098 13313 26627

MYNFA 10 2049 4098 13313 26627

programming language

machine length node no. edge no. node weight edge weight

TNFA 91 1931 5209 123739

TNFA k. 91 1931 109 1949

TNFA i. 17 415 449 10768

TNFA o. 19 451 56 946

CNNFA 24 581 42 599

MYNFA 91 1931 109 1949

133

Appendix B

Cgrep Source Code

We implemented cgrep based on the CNNFA proposed in this Thesis. The

cgrep is fully compatible with UNIX egrep. All the command options pro-

vided by UNIX egrep are also available in cgrep. The cgrep source code is

available upon request.

One of the most interesting implementation techniques not discussed

yet is an I-forest traversal algorithm. Consider a branching binary tree T ,

and a set V of nodes. We want to �nd the set of leaves in T which are

descendents of nodes in V . This operation is a fundamental part of the

�(V; a) operation described in Chapter 3. A naive implementation would

traverse T alone tree edges. We take advantage of the fact that T is a

branching binary tree, and use an array AT to represent leaves of T . The

leaves of T are stored in AT according to their post-ordering in T . Instead

of traversing T , we traverse array AT in our implementation. A simulation

APPENDIX B. CGREP SOURCE CODE 134

shows that the array traversal algorithm is four times faster than the tree

traversal algorithm.

The cgrep source consists of the following �le.

1. cgrep.c { main program of cgrep.

2. parse.c { a recursive descendent parser for regular expressions to con-

struct CNNFA's while parsing.

3. pack.c { packing transformation routines.

4. path.c { path compression routines.

5.
y.c { main routine to construct DFA from the CNNFA on the
y.

6. nfa2dfa.c { routines used by
y.c.

7. cnfa.h { the CNNFA data structures description.

8.
y.h { DFA data structures description.

9. time.h { benchmark timer routines.

B.1 Implemetation Note

B.2 cgrep program listing

B.2.1 cnfa.h

#ifndef NULL

APPENDIX B. CGREP SOURCE CODE 135

#define NULL (0)

#endif

#ifndef TRUE

#define TRUE 1

#define FALSE 0

#endif

/* my character type */

#define NEWLINE_OR TRUE

typedef unsigned char MYCHAR;

#define MAX_CHAR 128

MYCHAR *new_ch();

/* ---

* Compressed NFA

* --- */

struct edge;

struct nset;

struct set {

struct set *left; /* left child */

struct set *right; /* right child */

struct edge *edge; /* beginning of edge list */

struct edge *edget; /* tail of edge list */

MYCHAR *ch;

APPENDIX B. CGREP SOURCE CODE 136

int ccnt;

char final;

struct set *fparent, *iparent;

/* set/nset conversion */

char pin; /* pin_count */

struct set *Fclass; /* used in F-tree, pointing

to nearest ancestor with edge */

struct set *Iclass,

*Inext;

struct set *class,

*rep;

struct nset *Frep_addr;

int internal,

external;

struct nset *start,

*stop;

struct nset *nset; /* corresponding nset address */

MYCHAR *nch;

MYCHAR ch_size;

};

#define FSET 1

APPENDIX B. CGREP SOURCE CODE 137

#define ISET 2

struct edge {

struct set *iset; /* destination */

struct set *fset; /* origin */

struct edge *next; /* forward link */

struct edge *back; /* forward link */

char attrib;

/* used in NSET */

struct nset *start, *stop;

struct edge *anc;

char mark;

};

#define DIRECT 1

#define LAZY 2

#define INSERT 1

#define APPEND 2

typedef struct set SET;

typedef struct edge EDGE;

SET *join_sets(), *new_set();

EDGE *new_edge();

struct forest {

SET *set;

APPENDIX B. CGREP SOURCE CODE 138

struct forest *next;

};

extern struct forest *Iforest, *Fforest;

extern SET *AFset,

*Start,

*Final;

extern struct nset *Nstart;

/* --

* Simplified Compressed NFA

* -- */

struct nset {

struct nset *ext;

struct edge *edge;

struct nset *mnext;

struct nset *real;

MYCHAR *ch;

int ext_cnt;

int size;

char final;

MYCHAR ch_size;

char mark;

};

typedef struct nset NSET;

/*

APPENDIX B. CGREP SOURCE CODE 139

* Fast Dynamic memory allocation

*/

struct set_pool {

struct set *pool;

int cnt;

struct set_pool *next;

} ;

struct nset_pool {

struct nset *pool;

int cnt;

struct nset_pool *next;

} ;

struct edge_pool {

struct edge *pool;

int cnt;

struct edge_pool *next;

} ;

struct ch_pool {

MYCHAR *pool;

int cnt;

struct ch_pool *next;

} ;

extern int EGREP;

#define MAX_NFA 40960

extern int bflag,

APPENDIX B. CGREP SOURCE CODE 140

cflag,

hflag,

iflag,

lflag,

nflag,

pflag,

sflag,

vflag;

B.2.2
y.h

struct dfa {

struct dfa *trans[MAX_CHAR];

struct dfa *next; /* link -- used in hash or avail */

char final;

NSET **state;

int cnt;

char build; /* is this state been built completely */

char reserve; /* reserved state -- for compaction */

};

typedef struct dfa DFA;

/* DFA state pool */

#define MAX_NSET_POOL 160000

#ifndef MAX_DSIZE

#define MAX_DSIZE 2*MAX_CHAR+2 /* orginal MAX_CHAR * 2 */

#endif

APPENDIX B. CGREP SOURCE CODE 141

extern DFA ST[MAX_DSIZE]; /* state pool --- keep at most */

extern NSET *Nsetpool[MAX_NSET_POOL];

/* to store collection of NFA states that --- */

extern DFA *Avail; /* Available Dfa state pool */

extern NSET **Npp; /* Netpool pointer */

/* open hash table */

#define MAX_HASH 101

extern DFA *Hash[MAX_HASH];

struct mset {

NSET *st;

struct mset *next;

};

/* for muiti-set discrimination */

#define MAX_MBASE 60000

extern struct mset *Mset[MAX_CHAR];

extern struct mset Mbase[MAX_MBASE];

extern struct mset *Mptr ;

extern MYCHAR Mset_dirt[MAX_CHAR];

extern int Midx ; /* cnt of entry in Mset which is non NULL */

extern DFA *Dfirst;

APPENDIX B. CGREP SOURCE CODE 142

B.2.3 timer.h

#include <sys/time.h>

#define NULL 0

#define TIMER_DECL \

int ttmp; \

int Isec; \

float Esec; \

struct itimerval ttmp1;

#define TIMER_START \

{ttmp = setitimer(ITIMER_VIRTUAL, &ttmp1, NULL);}

#define TIMER_INIT \

ttmp1.it_interval.tv_sec = 100000L; \

ttmp1.it_value.tv_sec = 100000L; \

ttmp1.it_interval.tv_usec = 0L; \

ttmp1.it_value.tv_usec = 0L;

#define PRINT_STIME printf(" %d msec", Isec)

#define PRINT_TIME printf(\

"elapsed time: %f sec -- %d mini-sec\n", Esec, Isec)

#define ELAPSE_TIME { long sec, vsec; \

if(ttmp1.it_value.tv_usec > ttmp1.it_interval.tv_usec) { \

sec = ttmp1.it_interval.tv_sec - ttmp1.it_value.tv_sec - 1; \

vsec = 1000000L +(ttmp1.it_interval.tv_usec - \

ttmp1.it_value.tv_usec); \

} else { \

sec = ttmp1.it_interval.tv_sec - ttmp1.it_value.tv_sec ; \

vsec = (ttmp1.it_interval.tv_usec - ttmp1.it_value.tv_usec); \

APPENDIX B. CGREP SOURCE CODE 143

}; \

Esec = (float) sec + (((float) vsec) / 1000000.); \

Isec = (((int) sec) * 1000) + (((int) vsec) / 1000); \

}

#define TIMER_STOP {ttmp = getitimer(ITIMER_VIRTUAL, &ttmp1);}

B.2.4 cgrep.c

#include <stdio.h>

#include <stdlib.h>

#include "cnfa.h"

#ifndef USENFA

#include "fly.h"

extern int Uninit;

#endif

int bflag = FALSE, /* block # */

cflag = FALSE, /* count of matched lines */

Tflag = FALSE, /* count of matched lines */

tflag = FALSE, /* count of matched lines */

hflag = FALSE, /* file bname */

iflag = FALSE, /* ignore case */

lflag = FALSE, /* only file name are listed */

nflag = FALSE, /* line # */

pflag = FALSE,

sflag = FALSE, /* silence */

flag = 0,

vflag = FALSE; /* all but match */

APPENDIX B. CGREP SOURCE CODE 144

int lcnt, lnum;

#define BUF_SIZE 81920

void execute();

void read_input(), reg_compile();

MYCHAR *read_rexp();

#include "timer.h"

TIMER_DECL;

main (argc, argv)

int argc;

char *argv[];

{

MYCHAR *pat = NULL;

MYCHAR sstr[BUF_SIZE], *str = NULL;

int i;

char c;

int errflag = 0, loopcnt = 1;

extern char *optarg;

extern int optind;

int cnt, fd;

char *fname = NULL;

int print = 0;

while((c = getopt(argc, argv, "Ttbchilnsve:f:")) != -1) {

switch(c) {

case 'e':

pat = (MYCHAR *) optarg;

break;

APPENDIX B. CGREP SOURCE CODE 145

case 'f':

if((pat = read_rexp(optarg)) == NULL) {

fprintf(stderr,

"can not open exp file %s\n",

optarg);

exit(0);

};

break;

case 'T':

Tflag = TRUE;

case 't':

tflag = TRUE;

break;

case 'b':

bflag = TRUE;

break;

case 'c':

cflag = TRUE;

break;

case 'h':

hflag = TRUE;

break;

case 'i':

iflag = TRUE;

break;

case 'l':

lflag = TRUE;

break;

case 'n':

nflag = TRUE;

APPENDIX B. CGREP SOURCE CODE 146

break;

case 's':

sflag = TRUE;

break;

case 'v':

vflag = TRUE;

break;

case '?':

errflag++;

break;

};

if(errflag) {

fprintf(stderr,

"usage:%s [-tbchilnsv] [-e e] [-f efile] exp [file]\n", argv[0]);

exit(0);

};

};

if(pat == NULL) {

if(optind == argc) {

fprintf(stderr,

"usage:%s [-tbchilnsv] [-e e] [-f efile] exp [file]\n", argv[0]);

exit(0);

};

pat = (MYCHAR *) argv[optind++];

};

if(tflag) { TIMER_INIT; TIMER_START; };

(void) reg_compile(pat);

if(tflag) { TIMER_STOP; ELAPSE_TIME;

APPENDIX B. CGREP SOURCE CODE 147

if(Tflag) { PRINT_STIME; } else {

printf(">> %s NFA construction ", argv[0]); PRINT_TIME; };

};

if(optind + 1 < argc) {

hflag = TRUE;

};

flag = 1;

if(sflag) {

flag = 0; /* print nothing */

} else {

if(vflag) {

flag = 2;

if(cflag) flag = 3;

} else if(cflag) flag = 3;

};

#ifdef USEDFA

if(tflag) { TIMER_INIT; TIMER_START; };

(void) csubset(pat);

if(tflag) {

TIMER_STOP; ELAPSE_TIME;

if(Tflag) { PRINT_STIME; } else {

printf(">>DFA construction "); PRINT_TIME; };

};

#endif

if(tflag) { TIMER_INIT; TIMER_START; };

APPENDIX B. CGREP SOURCE CODE 148

#ifdef USEOL

if(Uninit) light_dfa_init();

Dfirst = (DFA *) build_first();

#endif

if(optind == argc) {

execute(NULL);

lcnt = (vflag) ? (lnum - lcnt) : lcnt;

if(flag == 3) printf("match lines:%d\n",lcnt);

} else {

for(; optind < argc; optind++) {

execute(argv[optind]);

lcnt = (vflag) ? (lnum - lcnt) : lcnt;

if(flag == 3) {

if(hflag) printf("%s:",argv[optind]);

printf("%d\n",lcnt);

};

};

};

if(tflag) {

TIMER_STOP; ELAPSE_TIME;

if(Tflag) { PRINT_STIME; putchar('\n');} else {

printf("\n>>simulation "); PRINT_TIME; };

};

exit((lcnt) ? 1 : 0);

}

#define BLK_SIZE 4096

#define BLKSIZE 512

MYCHAR exec_buf[BLK_SIZE+2];

APPENDIX B. CGREP SOURCE CODE 149

#define PRINT_HEADER { \

if(hflag && fname) printf("%s:",fname); \

if(bflag) printf("%d:",bnum / BLKSIZE); \

if(nflag) printf("%d:",lnum); \

}

void execute(fname)

char *fname;

{

FILE *f;

int bnum;

int cnt, cnt2, fd;

MYCHAR *ptrend, cres, *ptr, *ptr1;

lcnt = 0;

if(fname == NULL) {

f = stdin;

} else {

if((f = fopen(fname, "r")) == NULL) {

fprintf("can not open %s\n", fname);

return;

};

};

fd = fileno(f);

bnum = 1;

lnum = lcnt = 0;

APPENDIX B. CGREP SOURCE CODE 150

/* read first block */

cnt = read(fd, exec_buf + 1, BLK_SIZE);

bnum = cnt;

ptr = exec_buf;

ptrend = ptr + 1 + cnt;

*ptr = '\n';

*ptrend = '\0';

while(1) {

ptr1 = (MYCHAR *) memchr(ptr+1, '\n', cnt=(ptrend-ptr) -1);

if(ptr1 == NULL) {

(void) memcpy(exec_buf+1,ptr+1, cnt);

cnt2 = read(fd, exec_buf + cnt + 1, BLK_SIZE - cnt);

bnum += cnt2;

if(cnt + cnt2 <= 0) {

if(f != stdin) fclose(f);

return;

};

ptrend = exec_buf + cnt +cnt2 + 1;

*ptrend = '\0';

ptr1 = (MYCHAR *) memchr(exec_buf+cnt+1,'\n', cnt2);

ptr = exec_buf;

if(ptr1 == NULL) ptr1 = ptrend;

};

cres = *++ptr1;

*ptr1 = '\0';

lnum++;

APPENDIX B. CGREP SOURCE CODE 151

#ifdef USENFA

if(csimu(ptr)) {

#endif

#ifdef USEOL

if(Uninit) light_dfa_init();

if(ol_simu(ptr)) {

#endif

#ifdef USEDFA

if(dsimu(ptr)) {

#endif

/* --- if start from here --- */

lcnt++;

if(flag == 1) {

PRINT_HEADER;

printf("%s", ptr+1);

} else if(flag == 4) {

printf("%s\n", fname);

return;

};

} else {

if(flag == 2) {

/* mismatch this line */

PRINT_HEADER;

printf("%s", ptr+1);

} else if(flag == 5) {

printf("%s\n", fname);

return;

};

APPENDIX B. CGREP SOURCE CODE 152

} ;

*ptr1-- = cres;

#ifdef DEBUG

printf("advance %d character %x %x\n", ptr1 - ptr, ptr, ptr1);

#endif

ptr = ptr1;

}; /* while */

}

B.2.5 parse.c

#include <stdio.h>

#include <stdlib.h>

#include "cnfa.h"

SET *join_sets();

EDGE *new_edge();

/* ---

* Parse Routine

* -- */

void R(), E(), F(), T();

/*

* reg_parse() --

* an recursive-descendant parser for regular expressions,

APPENDIX B. CGREP SOURCE CODE 153

* it builds CNFA while parsing.

*/

void reg_parse(reg)

MYCHAR *reg;

{

EDGE *edge, *lazyh, *lazyt;

SET *Fset, *Iset;

int Null;

Iforest = Fforest = NULL;

Null = FALSE;

range_init();

(void) R(®, &Fset, &Iset, &lazyh, &lazyt, &Null);

if(*reg) {

error("parsing error -- reg_parse");

};

if(Fset) {

#ifdef P_DEBUG

printf("link %x to Fforest\n", Fset);

#endif

(void) mark_final(Fset);

(void) append_fset(Fset, INSERT);

};

/* build start state */

APPENDIX B. CGREP SOURCE CODE 154

Start = new_set();

edge = new_edge(Start, Iset, DIRECT);

Iset->pin = TRUE;

edge->next = edge->back = NULL;

Start->edge = edge;

Start->edget = edge;

Start->final = (Null) ? TRUE : FALSE;

if(Iset) (void) append_iset(Iset, APPEND);

append_iset(Start, APPEND);

append_fset(Start, INSERT);

}

void R(reg, fset, iset, lazyh, lazyt, null)

MYCHAR **reg;

SET **fset, **iset;

EDGE **lazyh, **lazyt;

int *null;

{

SET *fset1, *iset1;

EDGE *l1h, *l1t;

int null1;

(void) E(reg, fset, iset, lazyh, lazyt, null);

#ifdef NEWLINE_OR

if((**reg == '|') || (**reg == '\n')) {

#else

if((**reg == '|')) {

APPENDIX B. CGREP SOURCE CODE 155

#endif

(*reg)++;

(void) R(reg, &fset1, &iset1, &l1h, &l1t, &null1);

/* keep ordering -- */

(void) add_edge(lazyh, lazyt, *fset, iset1);

(void) add_edge(lazyh, lazyt, fset1, *iset);

(void) cat_edges(lazyh, lazyt, &l1h, &l1t);

*fset = join_sets(FSET, *fset, fset1);

*iset = join_sets(ISET, *iset, iset1);

*null |= null1;

};

}

begin_of_E(ch)

MYCHAR ch;

{

#ifdef NEWLINE_OR

return(ch && (! index("\n?*+|)", ch)));

#else

return(ch && (! index("?*+|)", ch)));

#endif

}

void E(reg, fset, iset, lazyh, lazyt, null)

MYCHAR **reg;

SET **fset, **iset;

EDGE **lazyh, **lazyt;

int *null;

{

APPENDIX B. CGREP SOURCE CODE 156

SET *fset1, *iset1;

EDGE *l1h, *l1t;

int null1;

(void) F(reg, fset, iset, lazyh, lazyt, null);

/* if current MYCHARacter starts an <E> */

if(begin_of_E(**reg)) {

register SET *set;

/* now we have a concatenation */

(void) E(reg, &fset1, &iset1, &l1h, &l1t, &null1);

/* add real edge */

if((set = *fset) && iset1) {

EDGE *edge, *edge2;

/* add it at the end of list */

edge = new_edge(set, iset1, DIRECT);

edge->back = edge2 = set->edget;

edge->next = NULL;

if(set->edge) {

edge2->next = edge;

set->edget = edge;

} else {

set->edge = set->edget = edge;

};

APPENDIX B. CGREP SOURCE CODE 157

};

/* concate lazy edges */

if(! *null) l1h = l1t = NULL;

if(! null1) *lazyh = *lazyt = NULL;

add_edge(lazyh, lazyt, fset1, *iset);

cat_edges(lazyh, lazyt, &l1h, &l1t);

/* Iset and Fset */

if(*null) *iset = join_sets(ISET, *iset, iset1);

else {

if(iset1) append_iset(iset1 , APPEND);

};

if(null1) *fset = join_sets(FSET, *fset, fset1);

else {

if(*fset) append_fset(*fset, APPEND);

*fset = fset1;

};

/* null */

*null = *null && null1;

};

}

void F(reg, fset, iset, lazyh, lazyt, null)

MYCHAR **reg;

APPENDIX B. CGREP SOURCE CODE 158

SET **fset, **iset;

EDGE **lazyh, **lazyt;

int *null;

{

int back = FALSE;

(void) T(reg, fset, iset, lazyh, lazyt, null);

while(**reg && index("*?+", **reg)) {

switch(*(*reg)++) {

case '?': back = FALSE; *null = TRUE; break;

case '*': back = TRUE; *null = TRUE; break;

case '+': back = TRUE; break;

};

};

if(back) {

EDGE *te, *edge, *e1;

SET *fs;

/* clear lazy edges */

for(edge=*lazyh; edge != NULL; edge = e1) {

fs = edge->fset;

e1 = edge->next;

/* now lazy edge [fs, is] become real */

if((te = fs->edget) != NULL) {

APPENDIX B. CGREP SOURCE CODE 159

if(te->attrib == DIRECT) te = te->back;

if(te == NULL) {

/* last edge must be DIRECT

and only one edge */

fs->edge = edge;

edge->next = fs->edget;

(fs->edget)->back = edge;

edge->back = NULL;

} else {

/* insert edge after te */

edge->next = te->next;

edge->back = te;

te->next = edge;

if(te == fs->edget) fs->edget = edge;

};

} else {

/* empty edge list */

edge->next = edge->back = NULL;

fs->edge = fs->edget = edge;

};

};

*lazyh = *lazyt = NULL;

};

}

void T(reg, fset, iset, lazyh, lazyt, null)

MYCHAR **reg;

SET **fset, **iset;

EDGE **lazyh, **lazyt;

APPENDIX B. CGREP SOURCE CODE 160

int *null;

{

MYCHAR ch;

#ifdef P_DEBUG

printf("T -- reg %x char %c %d\n", *reg, **reg, **reg);

#endif

switch(ch = *(*reg)++) {

case '(':

(void) R(reg, fset, iset, lazyh, lazyt, null);

if(*(*reg)++ != ')') {

error("unmatch (");

};

return;

case '[':

genrange(reg, fset, iset, lazyh, lazyt, null);

return;

case '.' :

gendot(fset, iset, lazyh, lazyt, null);

return;

case '^':

case '$': (void) genleaf('\n',

fset, iset, lazyh, lazyt, null);

return;

case '\\' :

switch(ch = *(*reg)++) {

case 'e':

(void) geneps(

fset, iset, lazyh, lazyt, null);

return;

APPENDIX B. CGREP SOURCE CODE 161

/* white space */

case 's': (void) genleaf(' ',

fset, iset, lazyh, lazyt, null);

return;

case 't': (void) genleaf('\t',

fset, iset, lazyh, lazyt, null);

return;

case '0': (void) genleaf('\0',

fset, iset, lazyh, lazyt, null);

return;

case 'n': (void) genleaf('\n',

fset, iset, lazyh, lazyt, null);

return;

default: (void) genleaf(ch,

fset, iset, lazyh, lazyt, null);

return;

};

default: genleaf(ch, fset, iset, lazyh, lazyt, null);

return;

};

}

/*

* Build an unoptimized CNFA

*

* Start state: Start

* F-forest: Fforest

* I-forest: Iforest

*/

SET *Start;

void reg_parse();

APPENDIX B. CGREP SOURCE CODE 162

reg_compile(reg)

MYCHAR *reg;

{

char Null;

EDGE *edge;

mem_init();

Null = FALSE;

reg_parse(reg, &Null); /* build unoptimized CNFA */

(void) pack();

(void) path_compression();

}

B.2.6
y.c

#include "nfa2dfa.c"

MYCHAR *ol_simu(str)

MYCHAR *str;

{

register DFA *st, *st2;

DFA *build_first();

register MYCHAR ch, *rtn;

/* take care of boundary condition */

/*

rtn = (Dfirst->final) ? (str) : (NULL) ;

if(! *str) return(rtn);

APPENDIX B. CGREP SOURCE CODE 163

*/

if(Dfirst->final) return(str);

if(! *str) return(NULL);

/* if(Uninit) light_dfa_init(); */

/* return initial state */

/* st = build_first(); */

st = Dfirst;

if(! st->build) build_next(st);

while(ch = *str++) {

/* in first state */

nextrun:

if(!(st2 = st->trans[ch])) continue;

if(st2->final) return(str);

st = st2;

while(ch = *str++) {

next2:

if(! (st2 = st->trans[ch])) {

if(st->build) {

st = Dfirst;

goto nextrun;

} else {

build_next(st);

goto next2;

};

};

if(st2->final) return(str);

APPENDIX B. CGREP SOURCE CODE 164

st = st2;

};

return(NULL);

};

return(NULL);

}

void build_follow(dptr)

DFA *dptr;

{

struct mset *mptr, *m1, *m2;

NSET *ns1, *ns, **nsptr, **nsptr2;

MYCHAR keep[MAX_CHAR];

int hashval;

char final;

int keep_idx, i;

DFA *nstate;

MYCHAR ch;

if(dptr->build) return;

keep_idx = 0;

for(i=0; i < Midx; i++) {

ch = Mset_dirt[i];

final = 0;

hashval = 0;

nsptr = Npp;

m1 = NULL;

for(mptr = Mset[ch]; mptr; mptr = m2) {

m2 = mptr->next;

APPENDIX B. CGREP SOURCE CODE 165

ns = mptr->st;

ns = ns->real;

mptr->st = ns;

if(! ns->mark) {

*nsptr++ = ns;

ns->mark = TRUE;

hashval = (hashval + ((int) ns >> 3)) & 037777;

final = final || ns->final;

mptr->next = m1;

m1 = mptr;

};

};

Mset[ch] = m1;

hashval = hashval % MAX_HASH;

if(nsptr > Nsetpool + MAX_NSET_POOL)

error("not enough nstate pool\n");

if(nstate = find_state(hashval, nsptr - Npp)) {

UNMARK_NSET;

dptr->trans[ch] = nstate;

Mset[ch] = NULL;

} else {

UNMARK_NSET;

if(nstate = new_dstate()) {

/* build a new state */

nstate->state = Npp;

nstate->final = final;

nstate->cnt = nsptr - Npp;

nstate->next = Hash[hashval];

Hash[hashval] = nstate;

APPENDIX B. CGREP SOURCE CODE 166

dptr->trans[ch] = nstate;

Mset[ch] = NULL;

Npp = nsptr;

} else {

keep[keep_idx++] = ch;

};

};

};

if(keep_idx) compact(dptr);

for(i=0; i < keep_idx; i++) {

ch = keep[i];

final = 0;

hashval = 0;

nsptr = Npp;

for(mptr = Mset[ch]; mptr; mptr = mptr->next) {

*nsptr++ = ns = mptr->st;

ns->mark = TRUE;

hashval = (hashval + ((int) ns >> 3)) & 037777;

final = final || ns->final;

};

hashval = hashval % MAX_HASH;

if(nsptr > Nsetpool + MAX_NSET_POOL)

error("not enough nstate pool\n");

if(nstate = find_state(hashval, nsptr - Npp)) {

UNMARK_NSET;

dptr->trans[ch] = nstate;

} else {

nstate = new_dstate();

APPENDIX B. CGREP SOURCE CODE 167

UNMARK_NSET;

/* build a new state */

nstate->state = Npp;

nstate->final = final;

nstate->next = Hash[hashval];

nstate->cnt = nsptr-Npp;

Npp = nsptr;

Hash[hashval] = nstate;

dptr->trans[ch] = nstate;

};

Mset[ch] = NULL;

}

dptr->build = TRUE;

}

void build_next(dptr)

DFA *dptr;

{

MYCHAR *ip, *ip2;

NSET **obase, **ohead, **otail;

NSET **dhead;

NSET *ns, *ns1, *ns2;

EDGE *edge, *edge2;

int firsttime;

register MYCHAR cch;

register struct mset *m;

/* initial Mset data structure */

Mptr = Mbase;

APPENDIX B. CGREP SOURCE CODE 168

Midx = 0;

obase = dptr->state;

ohead = obase + dptr->cnt;

dhead = dirty;

/* find adjacent state from those states in obase to ohead */

/* and tch buffer */

for(otail = obase, firsttime = TRUE; otail < ohead;) {

if(firsttime) {

ns = Nstart;

firsttime = FALSE;

} else {

ns = *otail++;

};

edge2 = ns->edge;

while(edge2) {

if(edge2->mark) break;

edge2->mark = TRUE;

ns1 = edge2->start;

ns2 = edge2->stop;

/* --

* SMARK_AND_PICK;

* -- */

{ NSET *nns1, *nns2;

while(ns1->mnext < ns2) {

if(ns1->mnext == ns1) {

/* node is unmark */

*dhead++ = ns1;

ns1->mnext = ns2;

APPENDIX B. CGREP SOURCE CODE 169

switch(ns1->ch_size) {

case 0:

/* external node */

nns1 = ns1->ext;

nns2 = nns1 + ns1->ext_cnt;

for(; nns1 < nns2; nns1++) {

if(nns1->ch_size == 1) {

Mptr->st = nns1;

if(! (m = Mset[cch = (MYCHAR) nns1->ch])) {

Mset_dirt[Midx++] = cch;

};

Mptr->next = m;

Mset[cch] = Mptr++;

} else {

ip = nns1->ch;

ip2 = ip + nns1->ch_size;

for(; ip < ip2;) {

Mptr->st = nns1;

if(! (m = Mset[cch = *ip++])) {

Mset_dirt[Midx++] = cch;

};

Mptr->next = m;

Mset[cch] = Mptr++;

};

};

};

break;

case 1:

Mptr->st = ns1;

if(! (m = Mset[cch = (MYCHAR) ns1->ch])) {

Mset_dirt[Midx++] = cch;

APPENDIX B. CGREP SOURCE CODE 170

};

Mptr->next = m;

Mset[cch] = Mptr++;

break;

default:

ip = ns1->ch;

ip2 = ip + ns1->ch_size;

for(; ip < ip2;) {

Mptr->st = ns1;

if(! (m = Mset[cch = *ip++])) {

Mset_dirt[Midx++] = cch;

};

Mptr->next = m;

Mset[cch] = Mptr++;

};

break;

};

ns1++;

} else {

/* printf("ns1 %x mnext %x\n", ns1, ns1->mnext); */

nns1 = ns1->mnext;

ns1->mnext = ns2;

ns1 = nns1;

};

};

}

/* ------------ end of SMARK_PICK ----------------- */

edge2 = edge2->next;

};

};

APPENDIX B. CGREP SOURCE CODE 171

/* clear edge mark */

for(otail=obase; otail < ohead; otail++) {

edge = (*otail)->edge;

for(; edge ; edge = edge->next) {

if(! edge->mark) break;

edge->mark = FALSE;

};

};

if(! Midx) { dptr->build = TRUE; return; };

for(otail= dirty; otail < dhead; otail++)

(*otail)->mnext = *otail;

Nstart->mnext = Nstart;

build_follow(dptr);

}

B.2.7 nfa2dfa.c

/*

* This file contains routines for regular expression matching;

* we build DFA on-the-fly, and use it for acceptance test.

*/

int st_cntt = 0;

#include <stdio.h>

#include "cnfa.h"

APPENDIX B. CGREP SOURCE CODE 172

#include "fly.h"

void build_next(), compact_hash(), compact_state();

void tmsd(), build_follow(), print_dstate();

void clear_mdirt();

DFA *build_first();

NSET **new_nstate();

int Uninit = TRUE;

int Sys_dirty = FALSE;

DFA *Dfirst;

DFA ST[MAX_DSIZE]; /* state pool --- keep at most */

NSET *Nsetpool[MAX_NSET_POOL]; /* to store collection of

NFA states that --- */

DFA *Avail; /* Available Dfa state pool */

NSET **Npp; /* Netpool pointer */

struct mset *Mset[MAX_CHAR];

struct mset Mbase[MAX_MBASE];

struct mset *Mptr = Mbase;

MYCHAR Mset_dirt[MAX_CHAR];

int Midx = 0;

DFA *Hash[MAX_HASH];

void light_dfa_init()

{

register DFA *sptr;

Uninit = FALSE;

/* link all the dfa states */

Avail = sptr = ST;

for(;sptr < ST+(MAX_DSIZE-1);sptr++) sptr->next = sptr+1;

sptr->next = NULL;

Npp = Nsetpool;

}

APPENDIX B. CGREP SOURCE CODE 173

void dfa_init()

{

register DFA *sptr;

register DFA **hptr;

register struct mset **mptr;

Uninit = FALSE;

/* link all the dfa states */

Avail = sptr = ST;

for(;sptr < ST+(MAX_DSIZE-1);sptr++) sptr->next = sptr+1;

sptr->next = NULL;

for(mptr=Mset; mptr < Mset+MAX_CHAR;) *mptr++ = NULL;

/* initialize hash table */

for(hptr=Hash;hptr < Hash+MAX_HASH;) *hptr++ = NULL;

Npp = Nsetpool;

}

int nsc = 0;

DFA * new_dstate()

{

register DFA *rtn, **sptr;

st_cntt++;

if((rtn = Avail) == NULL) {

return(NULL);

};

Avail = rtn->next;

/* clean transition table */

APPENDIX B. CGREP SOURCE CODE 174

if(Sys_dirty) {

rtn->final = FALSE;

rtn->build = FALSE;

rtn->reserve = FALSE;

rtn->next = NULL;

rtn->state = NULL;

rtn->cnt = 0;

for(sptr = rtn->trans; sptr < rtn->trans + MAX_CHAR;)

*sptr++ = NULL;

};

return(rtn);

}

DFA *In_use[MAX_DSIZE];

int In_idx;

void compact(dptr)

DFA *dptr;

{

register DFA **dp, **dp1, **dp2, *dp3;

int i;

/* mark all the reseved state */

Sys_dirty = TRUE;

dptr->reserve = TRUE;

Dfirst->reserve = TRUE;

In_idx = 0;

In_use[In_idx++] = Dfirst;

In_use[In_idx++] = dptr;

if(dptr == Dfirst) {

printf("something funny here\n");

};

for(i=0; i < 2; i++) {

APPENDIX B. CGREP SOURCE CODE 175

dptr = In_use[i];

for(dp = dptr->trans, dp2 = dptr->trans + MAX_CHAR ;

dp < dp2;) {

if(dp3 = *dp++) {

if(dp3->reserve) continue;

dp3->reserve = TRUE;

In_use[In_idx++] = dp3;

if(! dp3->build) continue;

dp3->build = FALSE;

for(dp1= dp3->trans; dp1 < dp3->trans +

MAX_CHAR;) {

*dp1++ = NULL;

};

};

};

};

(void) compact_hash();

(void) compact_state();

}

void compact_hash()

{

register DFA **hp, **hp2;

register DFA *dp, *dp2, *dp3;

for(hp = Hash, hp2 = hp + MAX_HASH; hp < hp2; hp++) {

if(dp = *hp) {

for(dp2 = NULL; dp ; dp = dp3) {

dp3 = dp->next;

if(dp->reserve) {

dp->reserve = FALSE;

dp->next = dp2;

APPENDIX B. CGREP SOURCE CODE 176

dp2 = dp;

} else {

dp->next = Avail;

Avail = dp;

};

};

*hp = dp2;

};

};

}

void print_dstate(dptr)

DFA *dptr;

{

NSET **nptr;

int i, cnt;

printf("dfa state %x final %d:", dptr, dptr->final);

cnt = dptr->cnt;

nptr = dptr->state;

for(i=0; i < cnt; i++) printf(" %x", *nptr++);

printf("\n");

}

DFA * find_state(hashval, cnt)

int hashval, cnt;

{

register DFA *dptr;

register NSET **nptr, **nptr2;

for(dptr = Hash[hashval]; dptr; dptr = dptr->next) {

if(dptr->cnt != cnt) continue;

APPENDIX B. CGREP SOURCE CODE 177

for(nptr=dptr->state,nptr2=nptr+cnt;nptr<nptr2;){

if(! (*nptr++)->mark) goto nxt;

};

return(dptr);

nxt: ;

};

return(NULL);

}

/* sort In_use array accroding to state pointer */

void in_sort()

{

register int i,j, min;

DFA *tmp;

/* simple selection sort */

for(i =0; i < In_idx - 1; i++) {

min = i;

for(j = i+1; j < In_idx ; j++) {

if(In_use[j]->state < In_use[min]->state) {

min = j;

};

};

tmp = In_use[min];

In_use[min] = In_use[i];

In_use[i] = tmp;

};

}

/*

* compact the Nsetpool array

*/

void compact_state()

APPENDIX B. CGREP SOURCE CODE 178

{

register i;

register NSET **sptr1, **sptr2, **sptr3;

(void) in_sort();

sptr1 = Nsetpool;

for(i=0; i < In_idx; i++) {

sptr2 = In_use[i]->state;

sptr3 = sptr2 + In_use[i]->cnt;

In_use[i]->state = sptr1;

while(sptr2 < sptr3) {

*sptr1++ = *sptr2++;

};

};

Npp = sptr1;

}

NSET * dirty [MAX_NFA];

DFA * build_first()

{

register MYCHAR cch;

register struct mset *m;

DFA *first;

MYCHAR *ip, *ip2;

NSET *ns1, *ns2, *ns3;

Nstart->mark = TRUE;

if(first = find_state(0,1)) {

return(first);

};

Nstart->mark = FALSE;

/* initial Mset data structure */

APPENDIX B. CGREP SOURCE CODE 179

Mptr = Mbase;

Midx = 0;

first = new_dstate();

first->final = Nstart->final;

first->cnt = 1;

first->build = FALSE;

first->state = Npp;

*Npp++ = Nstart;

Hash[0] = first;

return(first);

}

#define UNMARK_NSET { \

for(nsptr2 = Npp; nsptr2 < nsptr; nsptr2++) \

(*nsptr2)->mark = FALSE; \

}

B.2.8 pack.c

/*

* this file contains routines for packing transformation

*/

/*

packing algorithm

pack(Fset) = Iset_promote(Fset) if Fset is a leaf

pack(F1 + F2) = Fset_promote(pack(F1), pack(F2))

*/

#include <stdio.h>

#include <stdlib.h>

#include "cnfa.h"

APPENDIX B. CGREP SOURCE CODE 180

int Fclass_idx;

SET *No_edge_rep = NULL;

SET *AFset, *AIset;

void print_edge(), del_head(), del_tail(), pack_set();

void comp_Fclass(), pin_Iset();

void group_no_edge();

void pack()

{

register SET *Fset, *tset, *root;

struct forest *ff;

/* allocate F-class queue */

Fclass_idx = 0;

ff = Fforest;

pack_set(ff->set);

comp_Fclass(ff->set, ff->set);

ff = Fforest->next; /* the real Fset of reg exp */

AFset = ff->set;

pack_set(AFset);

comp_Fclass(AFset, AFset);

pin_Iset(AFset->edge);

(void) group_no_edge(AFset);

ff = ff->next; /* the only left over Fset */

if(ff != NULL) {

pack_set(ff->set);

comp_Fclass(ff->set, ff->set);

pin_Iset(ff->set->edge);

AFset = join_sets(FSET, AFset, ff->set);

};

APPENDIX B. CGREP SOURCE CODE 181

}

void pack_set(root)

SET *root;

{

register EDGE *edge1, *edge2, *edge3;

register SET *parent, *root2;

EDGE *edge4, *edge_save;

if(root->left) {

/* internal node */

/* step 0 -- pack subset -- */

pack_set(root->left);

pack_set(root->right);

/* ============================ */

/* Fset Promotion */

/* ============================ */

edge3 = edge4 = NULL;

edge1 = root->left->edget;

edge2 = root->right->edget;

if((edge1 == NULL) || (edge2 == NULL)) goto nofp;

if(edge1->iset == edge2->iset) {

del_tail(root->left);

del_tail(root->right);

edge3 = edge4 = edge1;

};

edge1 = root->left->edge;

edge2 = root->right->edge;

if((edge1 == NULL) || (edge2 == NULL)) {

if(edge3 != NULL) goto fp; else goto nofp;

};

APPENDIX B. CGREP SOURCE CODE 182

if(edge1->iset == edge2->iset) {

del_head(root->left);

del_head(root->right);

if(edge3) {

edge3 = edge1;

edge3->next = edge4;

edge4->back = edge3;

} else {

edge3 = edge4 = edge1;

};

};

fp:

if(edge3 == NULL) goto nofp;

if(edge1 = root->edget) {

if(edge3->iset < edge1->iset) {

/* one step ahead of tail */

edge4->next = edge1;

edge3->back = edge1->back;

edge1->back = edge4;

if(edge1 == root->edge) root->edge = edge3;

} else {

/* insert at tail */

edge1->next = edge3;

edge3->back = edge1;

root->edget = edge4;

};

} else {

root->edge = edge3;

root->edget = edge4;

};

APPENDIX B. CGREP SOURCE CODE 183

nofp:

/* compute F-classes */

if(edge1 = (root2 = root->right)->edge) {

comp_Fclass(root2, root2);

pin_Iset(edge1);

};

if(edge1 = (root2 = root->left)->edge) {

comp_Fclass(root2, root2);

pin_Iset(edge1);

};

} else {

/* looks as if has f-promotion */

edge3 = edge4 = root->edget;

};

/* ============================ */

/* Iset Promotion */

/* ============================ */

if(edge3 == NULL) goto pack_ret;

edge_save = (edge4) ? edge4->next : NULL;

/* start I-promotion */

edge1 = edge3;

edge2 = edge1->back;

if(edge2 == NULL) goto test_save;

if((parent = edge1->iset->iparent) == NULL) goto pack_ret;

if(edge2->iset->iparent != parent) goto pack_ret;

/* now edge1 and edge2 has the same parent */

do {

/* merge edge1 and edge2 */

edge1->iset = parent;

APPENDIX B. CGREP SOURCE CODE 184

edge1->back = edge2 = edge2->back;

if(edge2 != NULL) {

edge2->next = edge1;

} else {

/* reach the end */

root->edge = edge1;

goto test_save;

};

if((parent = parent->iparent) == NULL) break;

if(edge2->iset->iparent != parent) break;

} while(1);

goto pack_ret;

test_save:

if(edge_save == NULL) goto pack_ret;

parent = edge1->iset->iparent;

if(parent != edge_save->iset->iparent) goto pack_ret;

root->edge = edge1->next;

root->edge->back = NULL;

edge_save->iset = parent;

goto pack_ret;

pack_ret:

return;

}

void print_edge(root)

SET *root;

{

EDGE *e;

for(e=root->edge; e ; e = e->next) printf(" %x(%x %d)",

e, e->iset, e->attrib);

putchar('\n');

APPENDIX B. CGREP SOURCE CODE 185

}

void del_head(set)

SET *set;

{

register EDGE *edge1, *edge2;

if(! set) return;

if(! (edge1 = set->edge)) return;

set->edge = edge2 = edge1->next;

edge1->next = edge1->back = NULL;

if(edge2 == NULL) {

set->edget = NULL;

} else {

edge2->back = NULL;

};

}

void del_tail(set)

SET *set;

{

register EDGE *edge1, *edge2;

if(! set) return;

if(! (edge1 = set->edget)) return;

set->edget = edge2 = edge1->back;

edge1->next = edge1->back = NULL;

if(edge2 == NULL) {

set->edge = NULL;

} else {

edge2->next= NULL;

};

}

APPENDIX B. CGREP SOURCE CODE 186

void comp_Fclass(root, class)

SET *root, *class;

{

if(! root) return;

if(root->Fclass == NULL) {

if(root->left) {

comp_Fclass(root->left, class);

comp_Fclass(root->right, class);

} else {

/* This is the way we count number of Fclasses */

if(class->Fclass == NULL) {

class->Fclass = class;

Fclass_idx++;

};

};

root->Fclass = class;

};

}

void pin_Iset(edge)

EDGE *edge;

{

register EDGE *edge1;

edge1 = edge;

while(edge1) {

edge1->iset->pin = TRUE;

edge1 = edge1->next;

};

}

void group_no_edge(root)

SET *root;

APPENDIX B. CGREP SOURCE CODE 187

{

if(! root) return;

if(root->edge) return;

if(root->left) {

group_no_edge(root->left);

group_no_edge(root->right);

} else {

if(No_edge_rep) {

root->Fclass = No_edge_rep;

} else {

root->Fclass = No_edge_rep = root;

};

}

}

B.2.9 path.c

/*

* This file path.c contains routines used in path compression

* transformation.

*/

#include <stdio.h>

#include <stdlib.h>

#include "cnfa.h"

void comp_Iclass(), find_class(), fix_edges();

void nch_init(), fix_ss(), build_nch(), layout();

NSET *build_ext(), *new_nset();

struct set **Fclass;

APPENDIX B. CGREP SOURCE CODE 188

int Fclass_idx;

struct nset *Nstart;

/*

* CNFA

*/

NSET *NFset, /* redundant */

*NIset,

NFforest; / redundant */

NSET *NIforest = NULL; /* To link new I-forest */

int NIset_size;

void path_compression()

{

register SET *AIset, *tset, *root;

register NSET *bptr, *base;

/* Fclass -- as temp base map array */

Fclass = (SET **) xmalloc(sizeof(*Fclass) * Fclass_idx);

nch_init();

AIset = Iforest->set;

AIset->pin = TRUE; /* artifical made it */

Start->pin = TRUE;

comp_Iclass(AIset, AIset);

find_class(AIset);

NIforest = base = new_nset(AIset->internal + 1);

base->size = AIset->internal;

(base + AIset->internal)->mnext = base + AIset->internal ;

APPENDIX B. CGREP SOURCE CODE 189

layout(AIset, base);

Nstart = Start->Frep_addr;

/* fix_edges(Fforest->set, NULL); */

fix_edges(AFset, NULL);

fix_edges(Start, NULL);

/* patch start and stop fields of NSET records */

/* (void) fix_ss(NIforest, NIforest->size); */

}

void comp_Iclass(root, class)

SET *root, *class;

{

register SET *nclass, *root2;

root->Iclass = NULL;

nclass = (root->pin) ? root : class;

if(root2 = root->left) {

comp_Iclass(root2, nclass);

comp_Iclass(root->right, nclass);

} else {

/* Here we might create a self loop at leaf */

root->Inext= nclass->Iclass;

nclass->Iclass = root;

};

}

void find_class(root)

SET *root;

{

APPENDIX B. CGREP SOURCE CODE 190

register SET *root1, *root2;

register SET *Ic;

register int idx = 0;

SET *Fc, *Rep, *cl, *rep, *Ic2;

int i;

if(root->left) {

/* internal node */

if(Ic = root->Iclass) {

/* Fclass[] contains all the F-classes */

/* Fclass->class point to a list of Iset which */

/* is linked by Iclass field with Isets */

/* orginally Iclass field was used to link all */

/* the member in the same I-class */

/* -- see comp_Iclass() */

for(; Ic ; Ic = Ic2) {

/* Ic must be a leaf node */

Ic2 = Ic->Inext;

Fc = Ic->Fclass;

/* Fc->class must be NULL when first met */

if(! Fc->class){

Fclass[idx++] = Fc;

};

Ic->Inext = Fc->class;

Fc->class = Ic;

}; /* for Ic */

if(idx == 1) {

/* only one class in a I-class */

cl = Fclass[0]->class;

rep = root;

APPENDIX B. CGREP SOURCE CODE 191

/* seems to be redundant code, Yes, it is */

while(cl != NULL) {

cl->rep = rep;

cl = cl->Inext;

};

build_nch(rep, Fclass[0]->class);

/* create a loop intensionally */

/* here we have non-NULL Iclass */

/* but 0 external node */

root->Iclass = root;

root->external = 0;

root->internal = 1;

Fclass[0]->class = NULL;

root->Fclass = Fclass[0];

root->final = Fclass[0]->final; /* important */

} else {

/* two or more classes */

Rep = NULL;

/* seems to be redundant code, Yes, it is */

for(i=0; i < idx; i++) {

/* arbitary chose one in each class

as rep */

rep = cl = Fclass[i]->class;

do {

cl->rep = rep;

cl = cl->Inext;

} while(cl);

APPENDIX B. CGREP SOURCE CODE 192

build_nch(rep, Fclass[i]->class);

/* link all the class reps */

rep->Inext= Rep;

Rep = rep;

Fclass[i]->class = NULL;

};

root->internal = 1;

root->external = idx;

root->Iclass = Rep;

};

} else {

/* no Iclass */

;

};

find_class(root1 = root->left);

find_class(root2 = root->right);

root->internal += (root1->internal + root2->internal);

} else {

/* leaf node */

if(root->Iclass) {

root->internal = 1;

root->external = 0;

root->Iclass = NULL; /* since pointed to iself */

build_nch(root, root);

root->Iclass = root; /* recover */

} else {

;

};

};

APPENDIX B. CGREP SOURCE CODE 193

}

void layout(root, base)

SET *root;

NSET *base;

{

register SET *root2;

register SET *class;

register NSET *nbase;

if(root->internal == 0) return; /* nothing to do */

/* use dfs to assign storage */

nbase = base;

if(root2 = root->left) {

(void) layout(root2, nbase);

nbase += root2->internal;

root2= root->right;

(void) layout(root2, nbase);

nbase += root2->internal;

};

if(class = root->Iclass) {

/* we consume a internal node, and create external set

if necessary */

if(root->external) {

nbase->ext = build_ext(root->external, class);

nbase->ext_cnt = root->external;

nbase->ch = NULL;

nbase->ch_size = 0;

nbase->mnext = nbase;

nbase->edge = NULL;

APPENDIX B. CGREP SOURCE CODE 194

nbase->final = root->final;

/* nbase->start = nbase->stop = NULL; */

nbase->mark = FALSE;

nbase->real = nbase;

} else {

EDGE *edge1;

/* only one class and class rep is itself */

nbase->ext_cnt = 0;

nbase->ext = NULL;

nbase->ch = root->nch;

nbase->ch_size = root->ch_size;

nbase->mnext = nbase;

nbase->final = root->final;

nbase->mark = FALSE;

nbase->edge = class->Fclass->edge;

if(class->Fclass->Frep_addr == NULL) {

class->Fclass->Frep_addr = nbase;

nbase->real = nbase;

} else {

nbase->real = class->Fclass->Frep_addr;

};

};

nbase++;

};

if(root->pin) {

root->start = base;

root->stop = nbase;

} else {

APPENDIX B. CGREP SOURCE CODE 195

root->start = root->stop = NULL; /* redundant */

};

}

void fix_edges(root , anc_edge)

SET *root;

EDGE *anc_edge;

{

register EDGE *edge, *edge2, *nanc_edge;

register SET *iset;

if(! root) return;

nanc_edge = anc_edge;

if(edge = root->edge) {

nanc_edge = edge;

do {

iset = edge->iset;

edge->start = iset->start;

edge->stop = iset->stop;

edge->mark = FALSE;

edge2 = edge;

edge = edge->next;

} while(edge);

root->edget->next = anc_edge;

edge2->next = anc_edge;

};

fix_edges(root->left, nanc_edge);

fix_edges(root->right, nanc_edge);

}

APPENDIX B. CGREP SOURCE CODE 196

MYCHAR nch_map[MAX_CHAR];

void nch_init()

{

register MYCHAR *ptr;

for(ptr=nch_map; ptr < &nch_map[MAX_CHAR];)

*ptr++ = FALSE;

}

void build_nch(rep, class)

SET *rep, *class;

{

register SET *cp;

register MYCHAR ch, *ptr, *ptr2;

register int idx = 0, i;

MYCHAR chq[MAX_CHAR];

cp = class;

do {

ptr = cp->ch;

ptr2 = ptr + cp->ccnt;

while(ptr < ptr2) {

if(! nch_map[ch=*ptr++]) {

nch_map[ch] = TRUE;

chq[idx++] = ch;

};

};

cp = cp->Inext;

} while(cp);

APPENDIX B. CGREP SOURCE CODE 197

if(idx > 1) {

ptr = rep->nch = (MYCHAR *) new_ch(idx);

for(i=0, ptr2 = ptr + idx; ptr < ptr2;) {

ch = chq[i++];

*ptr++ = ch;

nch_map[ch] = FALSE;

};

} else {

/* only one character */

ch = chq[0];

rep->nch = (MYCHAR *) ch;

nch_map[ch] = FALSE;

};

rep->ch_size = idx;

}

struct nset * build_ext(cnt, class)

int cnt;

struct set *class;

{

struct nset *rtn, *rtn1;

rtn = rtn1 = new_nset(cnt);

for(; class != NULL ; class = class->Inext) {

rtn1->ext_cnt = 0;

rtn1->ext = NULL;

rtn1->ch = class->nch;

rtn1->ch_size = class->ch_size;

rtn1->mark = FALSE;

rtn1->final = class->final;

APPENDIX B. CGREP SOURCE CODE 198

rtn1->size = 0;

if(class->Fclass->Frep_addr == NULL) {

class->Fclass->Frep_addr = rtn1;

rtn1->real = rtn1;

} else {

rtn1->real = class->Fclass->Frep_addr;

};

rtn1->mnext = rtn1;

rtn1->edge = class->Fclass->edge;

rtn1++;

};

return(rtn);

}

{

int i;

MYCHAR *p;

EDGE *e;

printf("SET %x l %x r %x, ip %x fp %x ccnt %d \n\tedge:",

r, r->left, r->right, r->iparent, r->fparent, r->ccnt);

for(e=r->edge; e ; e = e->next) printf(" %x(%x %d)",

e, e->iset, e->attrib);

printf("\n\tch:");

for(p=r->ch, i=0; i < r->ccnt; i++) putchar(*p++);

printf(

"\n\tFc %x Ic %x In %x Cl %x rep %x pin %d ext %d int %d\n",

r->Fclass, r->Iclass, r->Inext, r->class, r->rep,

r->pin, r->external, r->internal);

APPENDIX B. CGREP SOURCE CODE 199

printf("\tstart %x stop %x chszie %d final %d\n\tnch:",

r->start, r->stop, r->ch_size, r->final);

if(r->ch_size == 1) putchar((MYCHAR) r->nch);

else for(p=r->nch, i=0; i < r->ch_size; i++) putchar(*p++);

printf("\n\n");

if(r->left) {

print_tree(r->left);

print_tree(r->right);

};

}

#endif

print_nset(start, cnt, type)

NSET *start;

int cnt, type;

{

MYCHAR *c;

EDGE *e;

NSET *b;

if(type) printf("internal : cnt %d \n", cnt);

else printf("External : cnt %d \n", cnt);

for(b=start; b < start + cnt; b++) {

printf("%x fin %d sz %d ext %x ext_cnt %d mx %x rl %x\n",

b,b->final,b->ch_size,b->ext,b->ext_cnt,b->mnext,b->real);

printf("\tch:");

if(b->ch_size == 1) putchar((MYCHAR) b->ch);

APPENDIX B. CGREP SOURCE CODE 200

elsefor(c=b->ch;c<b->ch+b->ch_size;)putchar(*c++);

printf("\n\tedge: ");

for(e=b->edge; e ; e=e->next)

printf("<%x, %x> ",e->start, e->stop);

printf("\n");

if(b->ext_cnt) print_nset(b->ext, b->ext_cnt, 0);

};

}

print_nnset(b)

NSET *b;

{

printf("addr %x ch %x, ext %x ",

b, b->ch, b->ext);

printf(" ed %x mn %x r %x sz %d\n",

b->edge, b->mnext,b->real,b->size);

}

B.2.10 uty.c

/*

* This file contains some utiltiy routines

*/

#include <stdio.h>

#include <stdlib.h>

#include "cnfa.h"

/* dynamic memory allocation */

struct set_pool *Set_pool;

struct nset_pool *Nset_pool;

struct edge_pool *Edge_pool;

struct ch_pool *Ch_pool;

APPENDIX B. CGREP SOURCE CODE 201

#define SPSIZE 128 /* set pool size */

#define NPSIZE 128 /* set pool size */

#define EPSIZE 128 /* edge pool size */

#define CPSIZE 1024

#define max(x,y) ((x > y) ? (x) : (y))

mmax(x,y)

{

return(((x) > (y)) ? (x) : (y));

}

void mem_init()

{

Set_pool = NULL;

Edge_pool = NULL;

Ch_pool = NULL;

}

error(msg)

char *msg;

{

fprintf(stderr, "%s\n", msg);

exit(0);

}

char *xmalloc(size)

int size;

{

char *rtn;

if((rtn = malloc(size)) == NULL)

error("no memory avaiable");

return(rtn);

}

SET *new_set()

APPENDIX B. CGREP SOURCE CODE 202

{

struct set_pool *tmp;

SET *rtn;

if((Set_pool) && (Set_pool->cnt--)) {

rtn = (Set_pool->pool)++ ;

} else {

tmp = (struct set_pool *) xmalloc(sizeof(*tmp));

tmp->next = Set_pool;

tmp->pool = (SET *) xmalloc(sizeof(SET) * SPSIZE);

tmp->cnt = SPSIZE - 1;

Set_pool = tmp;

rtn = (Set_pool->pool)++ ;

};

rtn->class = NULL;

rtn->final = FALSE;

rtn->edge = rtn->edget = NULL;

/* add for protection apr 14, 92*/

rtn->internal = rtn->external = 0;

/* end add for protection apr 14, 92*/

rtn->fparent = rtn->iparent = NULL;

rtn->left = rtn->right = NULL;

rtn->ch = rtn->nch = NULL;

rtn->ccnt = rtn->ch_size = 0;

rtn->start = rtn->stop = rtn->nset = rtn->Frep_addr = NULL;

rtn->rep = rtn->class = NULL;

rtn->Iclass = rtn->Inext = NULL;

rtn->Fclass = NULL;

return(rtn);

}

EDGE *new_edge(fset, iset, kind)

APPENDIX B. CGREP SOURCE CODE 203

SET *fset, *iset;

int kind;

{

struct edge_pool *tmp;

EDGE *rtn;

if((Edge_pool) && (Edge_pool->cnt--)) {

rtn = (Edge_pool->pool)++ ;

} else {

tmp = (struct edge_pool *) xmalloc(sizeof(*tmp));

tmp->next = Edge_pool;

tmp->pool = (EDGE *) xmalloc(sizeof(SET) * SPSIZE);

tmp->cnt = SPSIZE - 1;

Edge_pool = tmp;

rtn = (Edge_pool->pool)++ ;

};

rtn->fset = fset;

rtn->iset = iset;

rtn->attrib = kind;

rtn->next = rtn->back = NULL;

rtn->anc = NULL;

return(rtn);

}

MYCHAR *new_ch(size)

int size;

{

struct ch_pool *tmp;

MYCHAR *rtn;

if((Ch_pool) && (Ch_pool->cnt-size >= 0)) {

rtn = Ch_pool->pool;

APPENDIX B. CGREP SOURCE CODE 204

Ch_pool->pool += size;

Ch_pool->cnt -= size;

} else {

tmp = (struct ch_pool *) xmalloc(sizeof(*tmp));

tmp->next = Ch_pool;

tmp->pool = (MYCHAR *) xmalloc(CPSIZE * sizeof(MYCHAR));

tmp->cnt = CPSIZE - size;

Ch_pool = tmp;

rtn = Ch_pool->pool;

Ch_pool->pool += size;

};

return(rtn);

}

struct nset *new_nset(size)

int size;

{

struct nset_pool *tmp;

struct nset *rtmp, *rtn;

if((Nset_pool) && (Nset_pool->cnt-size >= 0)) {

rtn = Nset_pool->pool;

Nset_pool->pool += size;

Nset_pool->cnt -= size;

} else {

tmp = (struct nset_pool *) xmalloc(sizeof(*tmp));

tmp->next = Nset_pool;

tmp->pool = (NSET *) xmalloc(max(NPSIZE,size) *

sizeof(*rtn));

tmp->cnt = max(NPSIZE,size) - size;

Nset_pool = tmp;

rtn = Nset_pool->pool;

APPENDIX B. CGREP SOURCE CODE 205

Nset_pool->pool += size;

};

/* add for protection -- apr 14, 92 */

for(rtmp=rtn; rtmp < rtn + size; rtmp++) {

rtmp->ext_cnt = rtmp->size = rtmp->ch_size = 0;

rtmp->mnext = rtmp;

};

/* end add for protection -- apr 14, 92 */

return(rtn);

}

void free_set(head)

struct set_pool *head;

{

if(head == NULL) return;

free_set(head->next);

free(head->pool);

free(head);

}

void free_edge(head)

struct edge_pool *head;

{

if(head == NULL) return;

free_edge(head->next);

free(head->pool);

free(head);

}

void free_ch(head)

struct ch_pool *head;

{

if(head == NULL) return;

free_ch(head->next);

APPENDIX B. CGREP SOURCE CODE 206

free(head->pool);

free(head);

}

/*

* join two set

*/

SET * join_sets(type, set1, set2)

int type;

SET *set1, *set2;

{

SET *root;

if(set1 == NULL) return(set2);

if(set2 == NULL) return(set1);

root = new_set();

root->left = set1;

root->right = set2;

root->ch = NULL;

root->ccnt = 0;

root->edge = root->edget = NULL;

/* parent pointer */

if(type == FSET) {

set1->fparent = set2->fparent = root;

} else {

set1->iparent = set2->iparent = root;

};

return(root);

}

/*

* Concatenate two line [h1, t1] and [h2, t2] into [h1, t1]

* -- for lazy edges

APPENDIX B. CGREP SOURCE CODE 207

*/

void cat_edges(h1, t1, h2, t2)

EDGE **h1, **h2, **t1, **t2;

{

register EDGE *tail1, *head2;

if((tail1 = *h1) == NULL) {

*h1 = *h2;

*t1 = *t2;

} else if(head2 = *h2) {

(*t1)->next = head2;

(*h2)->back = tail1;

*t1 = *t2;

};

}

void add_edge(head, tail, fset, iset)

EDGE **head, **tail;

SET *fset, *iset;

{

register EDGE *rtail, *edge;

if(fset == NULL || iset == NULL) return;

edge = new_edge(fset, iset, LAZY);

if(rtail= *tail) {

edge->next = NULL;

edge->back = rtail;

rtail->next = edge;

*tail = edge;

} else {

edge->next = edge->back = NULL;

*head = *tail = edge;

APPENDIX B. CGREP SOURCE CODE 208

};

}

/*

* treat regular expression [^a-b]

*/

void geneps(fset, iset, lazyh, lazyt, null)

SET **fset, **iset;

EDGE **lazyh, **lazyt;

int *null;

{

*fset = *iset = NULL;

*lazyh = *lazyt = NULL;

*null = TRUE;

}

void genleaf(ch, fset, iset, lazyh, lazyt, null)

MYCHAR ch;

SET **fset, **iset;

EDGE **lazyh, **lazyt;

int *null;

{

register MYCHAR *cptr;

register SET *set;

*fset = *iset = set = new_set();

set->ch = cptr = new_ch(1); /* allocate one character */

*cptr = ch;

set->ccnt = 1;

set->edge = set->edget = NULL;

set->fparent = set->iparent = NULL;

*lazyh = *lazyt = new_edge(set, set , LAZY);

*null = FALSE;

APPENDIX B. CGREP SOURCE CODE 209

}

MYCHAR rmap[MAX_CHAR]; /* base array for genrange() */

void range_init()

{

register MYCHAR *ptr;

for(ptr=rmap; ptr < rmap + MAX_CHAR;) *ptr++ = FALSE;

}

/*

* Remark: We do not perform error checking in this routine

*/

void genrange(reg, fset, iset, lazyh, lazyt, null)

MYCHAR **reg;

SET **fset, **iset;

EDGE **lazyh, **lazyt;

int *null;

{

#define MAX_RANGE 20

register MYCHAR *ptr;

register MYCHAR ch;

register i, idx;

register SET *set;

MYCHAR range[MAX_RANGE][2];

int cnt, negate;

int ich;

idx = 0;

cnt = 0;

negate = FALSE;

ptr = *reg;

if(*ptr == '^') {

APPENDIX B. CGREP SOURCE CODE 210

ptr++; negate = TRUE;

};

for(; *ptr != ']';) {

range[idx][0] = *ptr++;

if(*ptr++ == '-') {

range[idx++][1] = *ptr++;

} else {

ptr--;

range[idx++][1] = NULL;

};

};

/* set reg */

*reg = ++ptr; cnt = 0;

for(i=0; i < idx; i++) {

if(range[i][1]) {

/* range pattern 'a-b' */

for(ich= (int) range[i][0]; ich <= (int) range[i][1];

ich++) {

if(! rmap[ich]) {

rmap[ich] = TRUE;

cnt++;

};

};

} else {

/* range pattern 'a' */

if(! rmap[(ch = range[i][0])]) {

rmap[ch] = TRUE;

cnt++;

};

};

};

APPENDIX B. CGREP SOURCE CODE 211

*fset = *iset = set = new_set();

set->ccnt = cnt = (negate) ? (MAX_CHAR - cnt) : cnt;

if(cnt == 0) error("no character");

set->ch = ptr = (MYCHAR *) new_ch(cnt);

/* a stupid algorithm, but keep it simple for now */

if(negate) {

for(ich=0; ich < MAX_CHAR; ich++) {

if(rmap[ich]) rmap[ich] = FALSE;

else {

*ptr++ = (MYCHAR) ich;

};

};

} else {

for(ich=0; ich < MAX_CHAR; ich++) {

if(rmap[ich]) {

rmap[ich] = FALSE;

*ptr++ = (MYCHAR) ich;

};

};

};

*lazyh = *lazyt = new_edge(set, set, LAZY);

set->left = set->right = NULL;

set->edge = set->edget = NULL;

set->fparent = set->iparent = NULL;

*null = FALSE;

}

/*

* accepts everything except NEWLINE

*/

void gendot(fset, iset, lazyh, lazyt, null)

APPENDIX B. CGREP SOURCE CODE 212

SET **fset, **iset;

EDGE **lazyh, **lazyt;

int *null;

{

register MYCHAR *ptr, ch;

register int ich;

register SET *set;

*fset = *iset = set = new_set();

set->ccnt = MAX_CHAR - 1;

set->ch = ptr = (MYCHAR *) xmalloc(MAX_CHAR -1);

for(ich=0; ich < '\n'; ich++) *ptr++ = (MYCHAR)ich;

for(ich='\n'+1;ich<MAX_CHAR;ich++)*ptr++=(MYCHAR)ich;

*lazyh = *lazyt = new_edge(set, set, LAZY);

set->left = set->right = NULL;

set->edge = set->edget = NULL;

set->fparent = set->iparent = NULL;

*null = FALSE;

}

void mark_final(set)

SET *set;

{

if(! set) return;

set->final = TRUE;

mark_final(set->left);

mark_final(set->right);

}

/*

* To build a compressed NFA

*/

APPENDIX B. CGREP SOURCE CODE 213

struct forest *Iforest, *Fforest;

void append_iset(iset, kind)

SET *iset;

{

SET *set;

struct forest *tmp;

if((kind == INSERT) || (Iforest == NULL)) {

tmp = (struct forest *) xmalloc(sizeof(*tmp));

tmp->set = iset;

tmp->next = Iforest;

Iforest = tmp;

} else {

/* link with previous fset */

set = new_set();

set->edge = set->edget = NULL;

set->iparent = NULL;

iset->iparent = Iforest->set->iparent = set;

set->left = iset;

set->right = Iforest->set;

Iforest->set = set;

};

}

void append_fset(fset , kind)

SET *fset;

{

SET *set;

struct forest *tmp;

if((kind == INSERT) || (Fforest == NULL)) {

tmp = (struct forest *) xmalloc(sizeof(*tmp));

APPENDIX B. CGREP SOURCE CODE 214

tmp->set = fset;

tmp->next = Fforest;

Fforest = tmp;

} else {

/* link with previous fset */

set = new_set();

set->edge = set->edget = NULL;

set->fparent = NULL;

fset->fparent = Fforest->set->fparent = set;

set->left = fset;

set->right = Fforest->set;

Fforest->set = set;

};

}

/*

* read regular expression from file -- trim all the white space

* and newlines

*/

void read_input(fname, str)

char *fname;

MYCHAR *str;

{

#define BUF 256

int cnt,fd;

MYCHAR *ptr, buf[BUF];

if((fd = open(fname, 0)) <= 0) {

printf("can not open %s\n", fname);

exit(0);

};

/* read regular expression */

APPENDIX B. CGREP SOURCE CODE 215

do {

cnt = read(fd, buf, BUF);

for(ptr = buf; ptr < buf + cnt; ptr++) {

switch(*ptr) {

case ' ':

case '\t':

case '\n':

case '\r':

break;

default:

*str++ = *ptr;

};

};

} while(cnt);

*str = '\0';

close(fd);

}

#include <sys/stat.h>

#include <sys/types.h>

MYCHAR *read_rexp(fname)

char *fname;

{

int cnt, fd;

struct stat s;

MYCHAR *rtn;

if((fd = open(fname, 0)) <= 0) return(NULL);

if(fstat(fd, &s)) return(NULL);

rtn = (MYCHAR *) xmalloc(cnt = s.st_size);

cnt = read(fd, rtn, cnt);

/* eliminate last NEWLINE -- same as egrep */

APPENDIX B. CGREP SOURCE CODE 216

if((cnt) && (rtn[cnt-1] == '\n')) rtn[cnt-1] = '\0';

close(fd);

return(rtn);

}

217

Appendix C

cgrep Benchmark Raw Timing

Data

All test are performed in a SUN 3/50. Benchmark time isin mini-second.

NFA Construction Time

a1 � � �an

NFA construction time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 20 20 100 1.00 5.00

50 40 40 280 1.00 7.00

100 40 120 680 3.00 17.00

150 80 280 1160 3.50 14.50

200 120 480 1720 4.00 14.33

�(a? � � �a?)�

NFA construction time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 20 40 140 2.00 7.00

50 40 200 600 5.00 15.00

100 60 820 2620 13.67 43.67

150 100 1720 7220 17.20 72.20

200 120 3020 15640 25.17 130.33

APPENDIX C. CGREP BENCHMARK RAW TIMING DATA 218

�((a1b1)? � � �(anbn)?)
��

NFA construction time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 20 60 220 3.00 11.00

50 80 380 860 4.75 10.75

100 160 1400 3220 8.75 20.12

150 180 3140 8160 17.44 45.33

200 260 5460 16960 21.00 65.23

�((a1b1)j � � � j(anbn))
��

NFA construction time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 40 80 220 2.00 5.50

50 120 280 600 2.33 5.00

100 160 1040 1500 6.50 9.38

150 300 2260 2500 7.53 8.33

200 360 3920 3960 10.89 11.00

�((a1b1)? � � � (anbn)?)�

NFA construction time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 40 60 260 1.50 6.50

50 100 300 900 3.00 9.00

100 220 1000 3380 4.55 15.36

150 280 2120 8740 7.57 31.21

200 420 3700 18180 8.81 43.29

�((a1b1)
+ � � � (anbn)

+)+�

NFA construction time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 40 80 200 2.00 5.00

50 100 320 560 3.20 5.60

100 120 1220 1360 10.17 11.33

150 220 2680 2400 12.18 10.91

200 260 4500 3860 17.31 14.85

APPENDIX C. CGREP BENCHMARK RAW TIMING DATA 219

�(a1? � � �an?)
��

NFA construction time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 20 60 160 3.00 8.00

50 40 220 620 5.50 15.50

100 60 760 2700 12.67 45.00

�(a1j � � � jan)
��

NFA construction time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 0 40 100 n/a n/a

50 60 140 280 2.33 4.67

100 80 440 640 5.50 8.00

�(0j1j2j3j4j5j6j7j8j9)n(0j1j2j3j4j5j6j7j8j9)��

NFA construction time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 20 60 140 3.00 7.00

50 60 180 380 3.00 6.33

100 140 600 780 4.29 5.57

150 180 1140 1240 6.33 6.89

200 280 2000 1840 7.14 6.57

�(a1? � � �an?)�

NFA construction time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 20 20 120 1.00 6.00

50 40 120 540 3.00 13.50

100 80 400 2380 5.00 29.75

�(a+1 � � �a+n)
+�

NFA construction time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 20 40 100 2.00 5.00

50 60 180 320 3.00 5.33

100 60 660 840 11.00 14.00

APPENDIX C. CGREP BENCHMARK RAW TIMING DATA 220

DFA Construction Time

a1 � � �an

DFA construction time (msec) speedup ratio

length cgrep2 egrep2 egrep2/cgrep2

20 0 20 n/a

50 0 80 n/a

100 20 300 15.00

150 40 600 15.00

200 40 1060 26.50

�(a? � � �a?)�

DFA construction time (msec) speedup ratio

length cgrep2 egrep2 egrep2/cgrep2

20 0 0 n/a

50 0 20 n/a

100 0 60 n/a

150 0 80 n/a

200 0 160 n/a

�((a1b1)? � � �(anbn)?)
��

DFA construction time (msec) speedup ratio

length cgrep2 egrep2 egrep2/cgrep2

20 0 40 n/a

50 20 160 8.00

100 20 420 21.00

150 20 800 40.00

200 40 1240 31.00

�((a1b1)j � � � j(anbn))
��

DFA construction time (msec) speedup ratio

length cgrep2 egrep2 egrep2/cgrep2

20 0 60 n/a

50 0 180 n/a

100 20 420 21.00

150 60 800 13.33

200 20 1220 61.00

APPENDIX C. CGREP BENCHMARK RAW TIMING DATA 221

�((a1b1)? � � � (anbn)?)�

DFA construction time (msec) speedup ratio

length cgrep2 egrep2 egrep2/cgrep2

20 20 200 10.00

50 140 1160 8.29

100 360 4440 12.33

150 700 9100 13.00

200 1020 16500 16.18

�((a1b1)
+ � � � (anbn)

+)+�

DFA construction time (msec) speedup ratio

length cgrep2 egrep2 egrep2/cgrep2

20 0 60 n/a

50 40 200 5.00

100 20 520 26.00

150 20 900 45.00

200 20 1360 68.00

�(a1? � � �an?)��

DFA construction time (msec) speedup ratio

length cgrep2 egrep2 egrep2/cgrep2

20 0 40 n/a

50 0 120 n/a

100 20 480 24.00

�(a1j � � � jan)
��

DFA construction time (msec) speedup ratio

length cgrep2 egrep2 egrep2/cgrep2

20 0 20 n/a

50 0 100 n/a

100 20 420 21.00

APPENDIX C. CGREP BENCHMARK RAW TIMING DATA 222

�(0j1j2j3j4j5j6j7j8j9)n(0j1j2j3j4j5j6j7j8j9)��

DFA construction time (msec) speedup ratio

length cgrep2 egrep2 egrep2/cgrep2

20 20 20 1.00

50 0 180 n/a

100 20 620 31.00

150 40 1340 33.50

200 60 2320 38.67

�(a1? � � �an?)�

DFA construction time (msec) speedup ratio

length cgrep2 egrep2 egrep2/cgrep2

20 20 120 6.00

50 100 1300 13.00

100 360 9180 25.50

�(a+1 � � �a+n)
+�

DFA construction time (msec) speedup ratio

length cgrep2 egrep2 egrep2/cgrep2

20 0 40 n/a

50 20 200 10.00

100 40 720 18.00

APPENDIX C. CGREP BENCHMARK RAW TIMING DATA 223

On-line Simulation Time

a1 � � �an

on-line simulation time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 20 20 140 1.00 7.00

50 0 60 280 n/a n/a

100 20 200 560 10.00 28.00

150 20 420 840 21.00 42.00

200 60 740 1180 12.33 19.67

�(a? � � �a?)�

on-line simulation time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 0 0 60 n/a n/a

50 20 0 320 0.00 16.00

100 0 20 2020 n/a n/a

150 0 0 6420 n/a n/a

200 0 0 14700 n/a n/a

�((a1b1)? � � �(anbn)?)
��

on-line simulation time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 0 40 220 n/a n/a

50 20 140 800 7.00 40.00

100 20 400 3220 20.00 161.00

150 20 760 8660 38.00 433.00

200 40 1320 18340 33.00 458.50

�((a1b1)j � � � j(anbn))
��

on-line simulation time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 20 20 220 1.00 11.00

50 20 120 840 6.00 42.00

100 20 360 3260 18.00 163.00

150 40 740 8880 18.50 222.00

200 40 1160 18460 29.00 461.50

APPENDIX C. CGREP BENCHMARK RAW TIMING DATA 224

�((a1b1)? � � � (anbn)?)�

on-line simulation time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 40 80 720 2.00 18.00

50 140 580 4140 4.14 29.57

100 400 2860 19360 7.15 48.40

150 640 84980 53640 132.78 83.81

200 1200 245820 115400 204.85 96.17

�((a1b1)
+ � � � (anbn)

+)+�

on-line simulation time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 0 40 240 n/a n/a

50 20 160 840 8.00 42.00

100 20 440 3260 22.00 163.00

150 20 800 8760 40.00 438.00

200 20 1300 18520 65.00 926.00

�(a1? � � �an?)��

on-line simulation time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 0 20 160 n/a n/a

50 0 40 880 n/a n/a

100 0 140 4920 n/a n/a

�(a1j � � � jan)
��

on-line simulation time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 0 0 160 n/a n/a

50 0 40 880 n/a n/a

100 20 80 4940 4.00 247.00

APPENDIX C. CGREP BENCHMARK RAW TIMING DATA 225

�(0j1j2j3j4j5j6j7j8j9)n(0j1j2j3j4j5j6j7j8j9)��

on-line simulation time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 20 20 260 1.00 13.00

50 40 40 1480 1.00 37.00

100 20 160 7440 8.00 372.00

150 40 280 21180 7.00 529.50

200 40 480 46200 12.00 1155.00

�(a1? � � �an?)�

on-line simulation time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 40 20 600 0.50 15.00

50 80 40 4420 0.50 55.25

100 200 140 25180 0.70 125.90

�(a+1 � � �a+n)
+�

on-line simulation time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 0 20 220 n/a n/a

50 20 80 1300 4.00 65.00

100 40 100 7300 2.50 182.50

APPENDIX C. CGREP BENCHMARK RAW TIMING DATA 226

Total Elapsed Time

a1 � � �an

total elapsed time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 40 40 240 1.00 6.00

50 40 100 560 2.50 14.00

100 60 320 1240 5.33 20.66

150 100 700 2000 7.00 20.00

200 180 1220 2900 6.77 16.11

�(a? � � �a?)�

total elapsed time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 20 40 200 2.00 10.00

50 60 200 920 3.33 15.33

100 60 840 4640 14.00 77.33

150 100 1720 13640 17.20 136.40

200 120 3020 30340 25.16 252.83

�((a1b1)? � � �(anbn)?)
��

total elapsed time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 20 100 440 5.00 22.00

50 100 520 1660 5.20 16.60

100 180 1800 6440 10.00 35.77

150 200 3900 16820 19.50 84.10

200 300 6780 35300 22.60 117.66

�((a1b1)j � � � j(anbn))��

total elapsed time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 60 100 440 1.66 7.33

50 140 400 1440 2.85 10.28

100 180 1400 4760 7.77 26.44

150 340 3000 11380 8.82 33.47

200 400 5080 22420 12.70 56.05

APPENDIX C. CGREP BENCHMARK RAW TIMING DATA 227

�((a1b1)? � � � (anbn)?)�

total elapsed time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 80 140 980 1.75 12.25

50 240 880 5040 3.66 21.00

100 620 3860 22740 6.22 36.67

150 920 87100 62380 94.67 67.80

200 1620 249520 133580 154.02 82.45

�((a1b1)
+ � � � (anbn)

+)+�

total elapsed time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 40 120 440 3.00 11.00

50 120 480 1400 4.00 11.66

100 140 1660 4620 11.85 33.00

150 240 3480 11160 14.50 46.50

200 280 5800 22380 20.71 79.92

�(a1? � � �an?)��

total elapsed time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 20 80 320 4.00 16.00

50 40 260 1500 6.50 37.50

100 60 900 7620 15.00 127.00

�(a1j � � � jan)
��

total elapsed time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 0 40 260 n/a n/a

50 60 180 1160 3.00 19.33

100 100 520 5580 5.20 55.80

APPENDIX C. CGREP BENCHMARK RAW TIMING DATA 228

�(0j1j2j3j4j5j6j7j8j9)n(0j1j2j3j4j5j6j7j8j9)��

total elapsed time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 40 80 400 2.00 10.00

50 100 220 1860 2.20 18.60

100 160 760 8220 4.75 51.37

150 220 1420 22420 6.45 101.90

200 320 2480 48040 7.75 150.12

�(a1? � � �an?)�

total elapsed time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 60 40 720 0.66 12.00

50 120 160 4960 1.33 41.33

100 280 540 27560 1.92 98.42

�(a+1 � � �a+n)
+�

total elapsed time (msec) speedup ratio

length cgrep egrep gnu egrep/cgrep gnu/cgrep

20 20 60 320 3.00 16.00

50 80 260 1620 3.25 20.25

100 100 760 8140 7.60 81.40

APPENDIX C. CGREP BENCHMARK RAW TIMING DATA 229

Programming Language Test Pattern

Raw Timing Data (in mini-second)

NFA DFA simu elapsed time

cgrep 80 0 840 920

egrep 420 300 1260 1680

e?grep 740 n/a 2640 3380

Speedup Ratio

NFA DFA simu elapsed time

cgrep /egrep 5.2 n/a 1.5 1.82

cgrep/ e?grep 9.3 n/a 3.14 3.67

230

Bibliography

[1] Aho, A., Hopcroft, J. and Ullman J., \Design and Analysis of Com-
puter Algorithms", Reading, Addison-Wesley, 1974.

[2] Aho, A., Sethi, R. and Ullman, J., \Compilers Principles, Techniques,
and Tools", Reading, Addison-Wesley, 1986.

[3] Aho, A., \Pattern Matching in Strings", in Formal Language Theory,
ed. R. V. Book, Academic Press, Inc. 1980.

[4] Berry, G. and Cosserat, L., \The Esterel synchronous programming
language and its mathematical semantics" in Seminar in Concur-

rency, S. D. Brookes, A. W. Roscoe, and G. Winskel, eds., LNCS
197, Springer-Verlag, 1985.

[5] Berry, G. and Sethi, R., \From Regular Expressions to Deterministic
Automata" Theoretical Computer Science, 48 (1986), pp. 117-126.

[6] Br�uggemann-Klein, A., \Regular Expressions into Finite Automata",
To appear in Theoretical Computer Science, 1992.

[7] Br�uggemann-Klein, A., private communication, 1992.

[8] Brzozowski, J., \Derivatives of Regular Expressions", JACM, Vol. 11,
No. 4., Oct. 1964, pp. 481-494.

[9] Cai, J. and Paige, R., \Look Ma, No Hashing, And No Arrays Neither",
ACM POPL, Jan. 1991, pp. 143 - 154.

BIBLIOGRAPHY 231

[10] Emerson, E. and Lei, C., \Model Checking in the Propositional Mu-
Calculus", Proc. IEEE Conf. on Logic in Computer Science, 1986, pp.
86 - 106.

[11] Fredman, M., Komlos, J., and Szemeredi, E., \Storing a Sparse Table
with O(1) Worst Case Access Time", JACM, vol. 31, no. 3, pp. 538-
544, July, 1984.

[12] Haertel, M., \GNU e?grep", USENET archive comp.sources.unix, Vol.
17, 1989.

[13] Hopcroft, J., \ An nlogn Algorithm for Minimizing states in a Finite
Automata", in Theory of Machines and Computation, ed. Kohavi and
Paz, pp. 189-196, Academic Press, New York, 1971.

[14] Hopcroft, J. and Ullman, J., \Formal Languages and Their Relation
to Automata",Reading, Addison-Wesley, 1969.

[15] Hume, A., \A Tale of Two Greps", Vol. 18, Num. 11, pp. 1063-1072,
Nov., 1988. Software-Practice and Experience,

[16] Kleene, S., \Representation of events in nerve nets and �nite au-
tomata", in Automata Studies, Ann. Math. Studies No. 34, Princeton
U. Press, 1956, pp. 3 - 41.

[17] Knuth, D., \On the translation of languages from left to right", Infor-
mation and Control, Vol. 8, No. 6, 1965, pp. 607 - 639.

[18] McNaughton, R. and Yamada, H. \Regular Expressions and State
Graphs for Automata", IRA Trans. on Electronic Computers, Vol.
EC-9, No. 1, Mar. 1960, pp 39-47.

[19] Meyer, E., \A Four-Russians Algorithm for Regular Expression Pat-
tern Matching", JACM, vol. 39, no. 2, April, 1992.

[20] Myhill, J., \Finite automata and representation of events," WADC,
Tech. Rep. 57-624, 1957.

[21] Nerode, A., \Linear automaton transformations," Proc. Amer. Math

Soc., Vol. 9, pp. 541 - 544, 1958.

BIBLIOGRAPHY 232

[22] Paige, R., \Programming with Invariant", IEEE Software, 3:1, Jan,
1986, pp. 56-69.

[23] Paige, R. and Koenig, S. \Finite Di�erencing of Computable Expres-
sions", TOPLAS, Vol. 4, Num. 3, 1982, pp. 402-452.

[24] Paige, R. and Tarjan, R., \Three E�cient Algorithms Based on Par-
tition Re�nement", SIAM Journal on Computing, Vol. 16, No. 6, Dec,
1987.

[25] Rabin, M. and Scott, D., \Finite automata and their decision prob-
lems" IBM J. Res. Develop., Vol. 3, No. 2, Apr., 1959, pp. 114 - 125.

[26] Ritchie, D. and Thompson, K. \The UNIX Time-Sharing System"
Communication ACM, Vol. 17, No. 7, Jul., 1974, pp. 365 - 375.

[27] Sharir, M., \Some Observations Concerning Formal Di�erentiation of
Set Theoretic Expressions", ACM TOPLAS 4:2 (1982), pp. 196-225.

[28] Smith, D., \KIDS - A Knowledge-Based Software Development Sys-
tem", in Proc. Workshop on Automating Software Design, AAAI-88,
1988.

[29] \SunOS Reference Manual VOL. II", Programmer's Manual, SUN mi-
crosystems, 1989.

[30] Thompson, K., "Regular Expression search Algorithm", Communica-

tion ACM 11:6 (1968), pp. 419-422.

[31] Ullman, J., \Computational Aspects of VLSI", Computer Science

Press, 1984.

[32] Wu, S. and Manber, U., \Fast Text Seaching with Errors", submitted
to CACM. Also, Tech. report TR-91-11, dept. of computer science,
University of Arizona.

