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The resulting algorithm makes a single pass over the input string, always using time linearly pro-
portional to the input. Space consumption depends only on the used regular expression, and not on
the input string. To the author’s knowledge, this is a new result. A prototype of aPOSIX.2 com-
patible regular expression matcher using the algorithm was done. Benchmarking results indicate that
the prototype compares favorably against some popular implementations. Furthermore, absence of
exponential or polynomial time worst cases makes it possible to use any regular expression without
performance problems, which is not the case with previous implementations or algorithms.

Keywords:
regular expressions, submatch addressing, parse extraction, regular expres-
sion parsing, approximate regular expression matching



TEKNILLINEN KORKEAKOULU DIPLOMITYÖN TIIVISTELMÄ

Tekijä: Ville Laurikari

Työn nimi: Säännöllisten lausekkeiden tehokas osittainen jäsentäminen
Päivämäärä: 1.11. 2001 Sivuja: 63
Osasto: Tietotekniikan osasto Professuuri: Tik-106
Työn valvoja: professori Eljas Soisalon-Soininen
Työn ohjaaja: tekn. lis. Kenneth Oksanen

Hakulauseketta vastaavien osien etsiminen merkkijonoista on eri muodoissaan tärkeä tietojenkäsitte-
lyteorian alue. Tämä diplomityö keskittyy säännöllisiin lausekkeisiin ja niiden määrittelemään kie-
leen kuuluvien merkkijonojen tehokkaaseen osittaiseen jäsentämiseen. Osittainen jäsentäminen tar-
koittaa säännöllisen lausekkeen mielivaltaisesti valittuja osalausekkeita vastaavien osamerkkijonojen
määrittämistä koko lausekkeen määrittelemään kieleen kuuluvassa merkkijonossa.

Tällä hetkellä laajassa käytössä olevat algoritmit joko kuluttavat pahimmassa tapauksessa eksponen-
tiaalisesti aikaa merkkijonojen tutkimiseen, käyttävät tilaa suoraan verrannollisesti syötejonon pituu-
teen vaikka vakiotila riittäisi, tai pystyvät käsittelemään vain säännöllisten lausekkeiden osajoukkoa.
Tässä diplomityössä ehdotan uutta ratkaisua osittaiseen jäsentämiseen, jossa käytetään epädetermi-
nistisiä äärellisiä automaatteja joiden siirtymiä on laajennettu funktionaalisilla sijoitusoperaatioilla.

Kehitetty algoritmi käy syötteen vain kerran läpi, ja sen aikakompleksisuus pahimmassakin tapauk-
sessa on suoraan verrannollinen syötejonon pituuteen. Algoritmin kuluttama tila riippuu vain käyte-
tystä säännöllisestä lausekkeesta eikä lainkaan syötejonosta. Työssä toteutettiin myös algoritmiin pe-
rustuvaPOSIX.2-yhteensopiva säännöllisten lausekkeiden osittaista jäsentämistä suorittava hakukir-
jaston prototyyppi. Suuntaa-antavien kokeellisten mittausten perusteella prototyyppi suoriutuu hyvin
verrattuna eräisiin yleisesti käytössä oleviin toteutuksiin. Lisäksi algoritmin lineaarisen aikakomplek-
sisuuden vuoksi hauissa voidaan käyttää mitä tahansa säännöllistä lauseketta ilman kohtuuttoman
ajankäytön vaaraa; tämä ei ole ollut mahdollista aikaisemmilla toteutuksilla tai algoritmeilla.

Avainsanat: säännölliset lausekkeet, osittainen jäsentäminen, likimääräinen säännöllisten
lausekkeiden sovittaminen
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Notation and Abbreviations

{a,b, . . .} unordered set containing the itemsa, b, . . .
/0 empty set
ε empty string
L∗ closure of the languageL
L1◦L2 concatenation of languagesL1 andL2
L(r) language represented by regular expressionr
R∗ reflexive, transitive closure of binary relationR
R+ transitive closure of binary relationR
N the set of natural numbers{0,1,2, . . .}
|w| length of stringw
`M binary relation between configurations ofM

“yields in one step”
�M binary relation between configurations ofM

“yields tag-wise ambiguously in one step”
≺T total order on functions from tags to their values
〈n1,n2, . . . ,nk〉 orderedk-tuple of the itemsn1, n2, . . . ,nk
{x : P(x)} the set of allx which have propertyP.

O(g(n))
{ f (n) : there exist positive constantsc andn0 such that

0≤ f (n)≤ cg(n) for all n≥ n0}
E1|E2 Regular expression such thatL(E1|E2) = L(E1)∪L(E2).
E∗ Regular expression such thatL(E∗) = L(E)∗.
. Regular expression matching any single symbol in the used

alphabet.

AST abstract syntax tree
DFA deterministic finite automaton
DFAS deterministic finite automaton with semantic actions
NFA nondeterministic finite automaton
NFAS nondeterministic finite automaton with semantic actions
TDFA deterministic finite automaton with tagged transitions
TNFA nondeterministic finite automaton with tagged transitions
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Chapter 1

Introduction

Pattern matching, despite its low-key coverage, is a very important topic in computer
science. It occurs naturally in many areas of science and information processing, such as
data processing, lexical analysis, text editing, and information retrieval. Indeed, pattern
matching is the main programming paradigm in several programming languages like
Prolog, SNOBOL4, and Icon, and most programming languages provide some kind of
primitives to perform different kinds of pattern matching on strings. In biology, string
pattern matching problems arise in the analysis of nucleic acids and protein sequences.
Considering all this, it is not a surprise that string pattern matching is one of the most
widely studied problems in theoretical computer science.

This thesis concentrates on regular expression patterns. Regular expressions [28]
are very popular for describing patterns for searching text, and there are numerous tools
and libraries which implement regular expression pattern matching, like lex [32] and
flex [47]. Most programming languages, such as Perl [54], provide some form of regular
expression pattern matching. Regular expressions and regular expression matching have
recently been used even for implementing type systems for programming languages
[20, 21].

It is not always enough just to perform language recognition, that is, to find out
whether patterns of interest occur in the text. Frequently we need to know exactly where
a substring matching the pattern was found and extract parts of a successful match. For
example, if a pattern matches an address, it should be easy for the programmer to access
the zip code. In the extreme case, a full parse tree of the match is required. The problem
of extracting partial parse information of a match is called submatch addressing and is
the main focus of this thesis.

Often the searched text is very large, emphasizing the need for efficient algorithms.
For example, an algorithm using time in the orderO(n2) or worse is unacceptable when
searching for a pattern from several megabytes of data. Space consumption should also
be as low as possible, so that no more space is used than necessary. In general a full
parse tree of a stringw matching a regular expressionr takesO(|w|) space, but in most

1



CHAPTER 1. INTRODUCTION 2

cases a full tree is not required, and even the full parse tree often takes onlyO(|r|) space.
Searching for a simple patternr from a very large text is best done using an algorithm
which uses space depending only onr, not the length of the text being searched.

There has been some work in the area of efficient algorithms for regular expression
pattern matching with full or partial parse extraction. The algorithms in widespread
use at the time of this writing either take exponential worst-case time to find a match,
useO(|w|) space, or can handle only a subset of all regular expressions. None of these
features are desirable for a general-purpose implementation, such as aPOSIX.2 [23]
compatible regular expression matching library.

This thesis mostly concentrates on on-line algorithms, where preprocessing of the
pattern must not take long, and the searched text cannot be indexed before the search.

This thesis has the following structure:

In Chapter2 regular expressions and the submatch addressing problem are defined.
After these a brief survey of previous work on submatch addressing and regular expres-
sion parsing is given, and the most important problems of the previous techniques are
shown.

In Chapter3 I first present nondeterministic automata which may have transitions
augmented with tags, give a formal definition of their semantics, and show how to solve
the submatch addressing problem using nondeterministic tagged automata. Then I dis-
cuss efficient techniques to simulate these automata, and show how they can be con-
verted to corresponding deterministic automata. Finally, a more generic model is dis-
cussed where transitions are augmented with computable functions which manipulate
some arbitrary data, and full parsing and approximate regular expression matching are
discussed.

In Chapter4 an actual implementation of some of the algorithms studied in the
previous chapter is discussed.

In Chapter5 some experimental test results using the implementation described in
Chapter4 are shown, and comparison to other implementations is done.

In Chapter6 some directions to future work and research are given.

In Chapter7 the conclusions gained in this thesis are summarized.



Chapter 2

Submatch Addressing for Regular
Expression Matching

Regular expressions, regular sets (sometimes called rational expressions and rational
sets, respectively), and finite automata are central concepts in automata and formal lan-
guage theory. A regular set is a set of strings matched by a regular expression. The
origins of regular sets go back to the work of McCulloch and Pitts [35] who devised
finite-state automata as a model for the behavior of neural networks.

The notation of regular expressions arises naturally from the mathematical result
of Kleene [28] that characterizes the regular sets as the smallest class of sets of strings
which contains all finite sets of strings and which is closed under the operations of
union, concatenation and Kleene closure.

This chapter first defines the syntax and semantics of regular expressions. Then the
submatch addressing problem is defined and some solutions by others are discussed,
showing the biggest problems of these previous solutions.

2.1 Regular Expressions

Definition 2.1 Regular expressionsover an alphabetΣ are defined as follows:

1. ε and each member ofΣ is a regular expression.

2. If r1 andr2 are regular expressions then so is(r1|r2).

3. If r1 andr2 are regular expressions then so is(r1r2).

4. If r is a regular expression then so isr∗.

Nothing is a regular expression unless it follows from a finite number of applications
of the rules above. The above defines only the regular expression syntax. The meaning

3



CHAPTER 2. SUBMATCH ADDRESSING FOR REGEXP MATCHING 4

of a regular expression, that is, the language represented by a regular expression, is
defined using a functionL, which is defined recursively as follows:

1. L(ε) = {ε} and for each symbola in the alphabetL(a) = {a}.

2. If r1 andr2 are regular expressions thenL((r1|r2)) = L(r1)∪L(r2).

3. If r1 andr2 are regular expressions thenL((r1r2)) = L(r1)◦L(r2).

4. If r is a regular expression thenL(r∗) = L(r)∗. �

The concatenation of two languagesL1◦L2 is defined as

L1◦L2 = {w : w = xy for somex∈ L1 andy∈ L2}

L∗, the Kleene closure of a languageL, is the set of all strings obtained by concatenating
zero or more strings fromL.

Many parentheses in regular expressions can be avoided by adopting the conven-
tion that the Kleene closure operator∗ has the highest precedence, then concatenation,
then | (alternation). The two binary operators, concatenation and alternation, are left-
associative. Under these conventions the regular expressions(a|((b(c∗))d)) anda|bc∗d
are equivalent, in the sense that they match the same strings, namely, ana, or ab fol-
lowed by a sequence of zero or morec’s followed by ad.

Example 2.1 For example, the regular expression

(hot|cold) (apple|blueberry|cherry) (pie|tart)

matches any of the twelve delicacies ranging fromhot apple pieto cold cherry tart.

The regular expression

the(very,)∗very hot cherry pie

matches the stringsthe very hot cherry pie; the very, very hot cherry pie; the very, very,
very hot cherry pie; and so on.

The regular expression
(c∗(a|(bc∗))∗)

represents the set of all strings over{a,b,c} that do not have the substringac. �

There are many popular programs, tools, and libraries for performing regular ex-
pression matching. Most of these programs implement some extensions to the regular
expression notation, likeawk [3], lex [32], andflex [47]. Extensions are usually imple-
mented in order to provide more succinct and understandable ways to represent regular
languages. In fact, the relative succinctness of different notations for regular sets has
been of considerable theoretical interest [19, 37].
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In the regular expression notation defined above the symbols), (, |, and ∗ are
metacharacters that are not a part of the alphabet. In computer implementations we
do not have the luxury of using extra characters out of the alphabet for the regular ex-
pression notation, and a way to match the regular expression metacharacters themselves
is needed. This is usually achieved by using backslash,\, as a quoting metacharacter
that permits metacharacters to be matched. The metacharacters can be denoted by pre-
fixing them with the backslash:\), \(, \|, and\∗ match), (, |, and∗ respectively. The
backslash itself is matched by\\.

Often we need to specify sets of input symbols in regular expressions, and using
expressions of the form(a1|a2|a3| . . .) can be cumbersome. Many implementations
support denoting sets of characters by surrounding them with brackets. For exam-
ple, [abc] is equivalent to(a|b|c). Character sets can be negated using a caret, so
that [^abc] matches any character excepta, b, or c. Character sets which consist of
consecutive characters can be defined using special character range notation. For ex-
ample,[a−z] matches any lower case character, and[^a−zA−Z0−9] matches any
non-alphanumeric character. The character range notation is naturally dependent on the
order in which the characters are represented internally in the implementation (typically
ASCII [6] or a derivative).

Further shorthands can be defined for the most often used sets of characters, the
most popular of these being. which matches any single character. The expression. can
be thought of as a “don’t-care” or “wildcard” symbol. Another common notation is the
+ operator. Ifr is a regular expression, then(r)+ denotes the same language asr(r)∗.

None of these extensions add more descriptive power to the expressions, in the
sense that the languages which can be denoted by the extended expressions are still
purely regular, and only regular sets can be described with these extended expressions.

One popular extension which does extend the class of representable languages is
back referencing. Regular expressions with back referencing, orrewbrs, appeared in
the first version of the SNOBOL programming language [16], and have since found
their way into for example the UNIX commandgrep and the Perl [54] programming
language.

Rewbrs have an assignment operator %, so that if for exampler is a regular expres-
sion, then the rewbrr%v0 matches whateverr matches and assigns the matched string to
the variablev0. After this, the variable can be used to match that same string again. For
example, the rewbr(a|b)∗%v0v0 denotes the language{w : w = xx andx ∈ {a,b}∗}.
Repeated strings like this are calledsquaresor tandem repeats. As another example,
the rewbr(a|b|c)∗((a|b|c)%v0)(a|b|c)∗v0(a|b|c)∗ matches any string ofa’s, b’s or c’s
with at least one repeated character.

Surprisingly, not much theoretical study of back referencing has been done. A re-
lated but restricted class of expressions has been studied by Angluin [7]. Angluin’s
expressions do not have the alternation operator and only one back reference is allowed.
Also Larsen [30] has studied regular expressions with back referencing and showed that
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the power of the expressions increase with the number of nested levels that are allowed.

Aho has also studied rewbrs, and showed that given a pattern consisting of a rewbrr
and an input strings the problem of finding out whethers contains a substring matched
by r is NP-complete [1]. This is perhaps one of the main reasons for lack of broad
theoretical interest in rewbrs. Back referencing constructs shall not be discussed any
further in this thesis.

2.2 Submatch Addressing

The extension discussed in this section,submatch addressing, sometimes calledsub-
string addressing of matches, substring extraction, parse extraction, or just parsing
regular expressions, is a very useful feature implemented in many regular expression
matching programs. For example, all IEEEPOSIX standard [23] compatible regexp
matching libraries, and the Perl [54] and SNOBOL [16] programming languages sup-
port submatch addressing.

Instead of being an extension to the regular expression notation, submatch address-
ing is an extension to the amount of detail given about a successful match. Not only
the information of whether a match was found is given, but the substrings matching the
pattern and given subpatterns are reported. In short, submatch addressing means finding
the position and extent of the substring matched by a given subexpression.

For example, the regular expressionvery(.∗) stick matches the stringJack has a
very long blue stick in his hand. To be precise, the regular expression matches the
substringvery long blue stick. The parenthesized subexpression matches the substring
long blue, and it is asubmatchof the whole match. Submatches can be reported as
pairs of integers〈s,e〉, wheres is the position of the first character of the submatch
and e is the position of the last character of the submatch plus one. The length of
the submatch in characters can then be computed bye− s. In the above example, the
submatch addressing information for the parenthesized subexpression is〈16,25〉, and
the length of the submatch is 9.

To mark subexpressions for which submatch addressing needs to be done we define
a new notation; the wanted subexpression is surrounded with braces,{ and }. The
regular expression in the above example can then be rewritten using this notation as
very{.∗} stick.

2.2.1 Resolving Ambiguity

It is often the case that when matching a regular expression, a subexpression of the
pattern can participate in the match of several different substrings of the input string.
It is also possible that a subexpression does not match any substring even though the
pattern as a whole does match.
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Table 2.1: Leftmost-longest matches of{a∗}{a∗} andaaa

first subexpression second subexpression

〈0,0〉 〈0,3〉
〈0,1〉 〈1,3〉
〈0,2〉 〈2,3〉
〈0,3〉 〈3,3〉

For example, consider the regular expression{a∗}{a∗} and stringaaa. There are
twenty possible submatch addressings in all, any of which are correct. One possibility
is 〈0,0〉 for the first subexpression and〈0,3〉 for the second. Another possibility is〈1,2〉
and〈2,3〉, and so on.

The following rules are used to determine which substrings are chosen:

• Leftmost-longest rule: In the event that a regular expression could match more
than one substring of the input string, the match starting earliest in the string is
chosen. If the regular expression may match more than one substring at that point,
the longest substring is chosen.

• Subexpression rule: Subexpressions also match the longest possible substrings,
subject to the constraint that the leftmost-longest rule must not be violated. Subex-
pressions starting earlier in the regular expression take priority over ones starting
later. Note that higher-level subexpressions thus take priority over their lower-
level component subexpressions. Matching an empty string is considered longer
than no match at all.

• Repeated matching rule: If a subexpression matches more than one substring
of the whole match, the last such substring is chosen. Note that the candidate
substrings cannot overlap.

The rules are in order of decreasing priority. The subexpression rule is applied to
each subexpression in order, regardless of which subexpressions are marked for sub-
match addressing.

Example 2.2 The submatch rule tells us to choose the addressing on the Let us match
the regular expression{a∗}{a∗} and stringaaa. The leftmost-longest rule requires that
the whole string is matched. This restriction cuts down the number of possible substring
addressings to the four leftmost-longest matches shown in Table2.1.

The submatch rule tells us to choose the addressing on the last row, because it has the
longest match for the first subexpression. �

Example 2.3 As another example, consider the regular expression(a|a∗)∗. The syntax
tree for this expression is shown in Figure2.1. Each subtree is numbered with a number
from 1 to 5.
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|

∗ 1

2

3 4

5

a ∗

a

Figure 2.1: Syntax tree for(a|a∗)∗

Table2.2 shows the submatches for each subtree for some input strings. Matching
the empty string demonstrates the rule that an empty match is considered longer than no
match at all; subtree number 4 can match the empty string and therefore it must match
the empty string, although this would not be necessary to make the whole expression
match.

Table 2.2: Submatch addressings for(a|a∗)∗ against some strings

string 1 2 3 4 5

ε 〈0,0〉 〈0,0〉 〈−1,−1〉 〈0,0〉 〈−1,−1〉
ba 〈0,0〉 〈0,0〉 〈−1,−1〉 〈0,0〉 〈−1,−1〉
a 〈0,1〉 〈0,1〉 〈0,1〉 〈−1,−1〉 〈−1,−1〉
aa 〈0,2〉 〈0,2〉 〈−1,−1〉 〈0,2〉 〈1,2〉
aaa 〈0,3〉 〈0,3〉 〈−1,−1〉 〈0,3〉 〈2,3〉

The second row on the table demonstrates the leftmost-longest rule. It would be pos-
sible to match the longer substring starting from the second character, but the leftmost,
and in this case shorter, match is chosen.

The third row shows that subexpressions starting earlier take priority over ones start-
ing later. In terms of a regular expression syntax tree, a depth first preorder traversal of
the tree enumerates the subexpressions in order of priority. The subtrees in Figure2.1
are numbered like this. Here, subtree number 3 takes priority over subtree number 4, so
the one character is matched by subtree 3 instead of 4.

The fourth and fifth row demonstrate how higher-level subexpressions take priority
over their lower-level component subexpressions. It would be possible to make the
match by letting subtree 3 match the twoa’s by making two iterations with the topmost
star operator. But since subtree 2 takes priority over its components, we must choose
the match which has the longest submatch for subtree 2. �

The ambiguity resolving scheme described here is, of course, only one of numerous
alternatives. The approach used here has almost identical semantics to the one used
in [23]. Naturally, these rules are not good for every situation; in fact, the generally
accepted leftmost-longest rule has been the subject of some criticism [11]. The main
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argument is that searching for longest matching substrings usually results in more com-
plicated patterns when searching structured text, such as XML [14].

2.3 Previous Work

The rest of this chapter describes briefly some solutions to the submatch addressing
problem developed by others. Each subsection describes a different solution.

2.3.1 Backtracking Matchers

Most regular expression matching software which support substring addressing do not
use the textbook NFA or DFA methods for matching regular expressions, but an inter-
pretive backtracking algorithm and a stack of backtracking points.

There are two major advantages of the backtracking method — it is easy to imple-
ment and it allows extensions like submatch addressing and back referencing [1, 7, 30]
to be incorporated easily.

There is some amount of history in the evolution of backtracking algorithms which
can still be seen in the versions used today. The original backtracking algorithms sup-
ported only a subset of the regular expression syntax, the alternation operator| was not
supported at all. This made it possible to implement a backtracking algorithm which
finds the longest match without extra backtracking.

When| is added, it becomes possible to cheat the backtracking algorithm into mak-
ing a poor choice early on that produces a less-than-longest match in the end. Many
of the implementors did not notice this; their documentation still claims longest match,
even though they do not always find it. In order to find the longest match, the algorithm
will have to explore every possible match, and this can be spectacularly expensive even
for relatively simple expressions. For example, the GNU regex-0.12 library consumes
exponential time when matching the regular expression(a∗)∗|b∗ with input of the form
aaaaaaa. . . b. With an input of only approximately 25 characters the matching takes
tens of seconds on a current workstation.

On the other hand, Perl [54] takes the easy way out; it does not even try to return
the longest match. This can be very confusing. As an example, take the Perl regular
expressions(a|ab)(bc)? and(ab|a)(bc)?, and the stringsab andabc. The Perl
program

"ab" =~ /(a|ab)(bc)?/; print($&, "\n");
"abc" =~ /(a|ab)(bc)?/; print($&, "\n");
"ab" =~ /(ab|a)(bc)?/; print($&, "\n");
"abc" =~ /(ab|a)(bc)?/; print($&, "\n");

outputs the following:
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a
abc
ab
ab

Each line in the program matches the string on the left-hand side of the=~ operator
against the regular expression between the/ characters. The matching substring is then
printed.

Even though it would be possible for each line in the program to match the whole
string, it does not always happen. Namely, the first and last lines of the program do not
find the longest match. This is confusing for a programmer who does not know how
the Perl regular expression matcher works, and may even be misinterpreted as a bug.
There are also cases which take a very long time to run, even though Perl tries to limit
the amount of backtracking by not guaranteeing longest matches. For example, this
program

"aaaaaaaaaaaaaaaaaaaaaaaaab" =~ /((a*)*b)*b/;

takes tens of seconds to run (using Perl version 5.005_03) on current desktop hardware.
This too may be misinterpreted as an “infinite loop” bug.

The Perl regexp matcher is notoriously complex and contains a number of different
tricks and optimizations to avoid situations like the above where matching takes expo-
nential time. Still, no number of tricks will cover every possible situation, and there
is a limit to the number of optimizations which can be applied until the program code
becomes unmaintainable.

2.3.2 Nakata-Sassa Semantic Rules

Nakata and Sassa have proposedregular expressions with semantic rules[43], which
can be used as tools for expressing the syntax and semantics of input data, and a method
of generating programs for processing these input data. Their regular expressions can
have intermixed semantic statements, which can conceivably be extended to implement
submatch addressing instead of using backtracking algorithms described above.

For example, in the regular expression

(α|β )γ

we can insert the semantic rulesf andg by writing

([ f ](α|β )[g])γ

The rulesf andg can be implemented to store the current position in the input string to,
say, the variablest0 andt1 respectively. After a successful match,〈t0, t1〉 would then be
the submatch addressing data for the parenthesized subexpression.
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q0 q1 q2 q3 q4 q5 q6 q7

ε

ε a[V← a] ε[ f (V)] ε a[V ′← a] ε[g(V ′)] b

ε

q2,q5 q8

q2( f (V))

q7(g(V))

a[ f (V);V← a]

q5( f (V))a[V← a] b[g(V)]

Figure 2.2: NFAS and DFAS for(a[ f (a)])∗a[g(a)]b

The basic idea in the implementation of Nakata-Sassa semantic rules is that a pro-
cessing program for an expression with semantic rules can be expressed as a finite au-
tomaton for the underlying regular expression with semantic actions attached to the
proper transitions. These automata are callednondeterministic finite automata with se-
mantic actions(NFAS) anddeterministic finite automata with semantic actions(DFAS).

Nakata and Sassa do not discuss efficient methods for simulating nondeterministic
automata with semantic action transitions, but give an algorithm for translation from
nondeterministic finite automata with semantic actions to corresponding deterministic
automata. Their algorithm, however, fails to produce correct deterministic automata for
classes of important nondeterministic automata, as we shall soon see.

In the Nakata-Sassa system, each state of the nondeterministic automaton to convert
is assigned a temporary variable which is used to postpone execution of semantic actions
in cases where look-ahead is necessary. This is the weak spot of the method, and makes
it impossible to use it to implement for example aPOSIX.2 [23] conformant regular
expression matching library.

For example, the expression(a[ f (a)])∗a[g(a)]b works correctly (see Figure2.2),
whereas(a[ f (a)])∗a[g(a)]ab cannot be implemented (see Figure2.3), becauseV ← a2
is to be executed at the transition fromQ2 to Q3, while f (V) for V ← a2 has not yet
been evaluated. Nakata and Sassa note that the previous case could be implemented by
increasing the number of variables from one to two (by changing the assignments into
V1← a1 andV2← a2, and changing 2( f (V); f (V)) in Q3 to 2( f (V1); f (V2))).

However, they fail to point out that this does not help in the general case, because
if there is some finite number ofn variables per state, the automaton generated from a
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ε

ε

ε a[V← a] ε[ f (V)] ε a[V ′← a] ε[g(V ′)] a b
q1 q2 q3 q4 q5 q6 q7 q8 q9

q2,q5

Q1

Q2

Q3

a2[V← a2]a1[V← a1] q5( f (V))
q2( f (V))

q7(g(V))

q2( f (V); f (V))
q5( f (V); f (V))
q7( f (V);g(V))

q8(g(V))

Figure 2.3: NFAS and partial DFAS for(a[ f (a)])∗a[g(a)]ab

regular expression of the form

(a[ f (a)])∗
n+1︷ ︸︸ ︷

a. . .a

does not work, becausen + 1 variables would be needed per state to implement a
matcher using the Nakata-Sassa method. All the algorithms given in their paper [43]
also assume just one variable per state, and increasing the number of variables per state
is only briefly mentioned. Also, Nakata and Sassa do not discuss resolving ambiguity
at all; there are many important cases where submatch addressing and semantic actions
can be done in different ways (see Section2.2.1).

2.3.3 Kearns’s Parse Extraction

In his paper [25], Kearns describes a method for extracting a parse after matching with
a finite automaton. First he shows algorithms to find matches of regular expressions
patterns in strings.

One by-product of the matching process described is a sequence of statesQ0,Q1, . . . ,Qn,
such thatQ0 is the initial state andQn is an accepting state. The whole sequence of states
is writtenQ and theith state asQi . EachQi is actually a set of places in the parse tree
for the regular expression patternp being searched for.

Kearns gives a recursive algorithm which operates on the sequence of statesQ and
can be used to build a full parse tree of the match. He shows that the algorithm is
optimal in space and time. The algorithm to build the parse tree is indeed optimal in
this regard, but the sequenceQ needsO(|w|q) space to store for an input stringw and
pattern of sizeq. The sequenceQ is not needed for anything else but parse extraction,
so the actual space complexity of Kearns’s algorithm is, in fact, not optimal for cases
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q0 q1

q2 q3

q4 q5

q6

ε

ε

ε

ε

ε

b

a

ε

Figure 2.4: NFA fora+(ε|b)

where the parse tree or partial parse tree takes less thanO(|w|q) space to store.

As an example we simulate the NFA in Figure2.4, which represents the pattern
a+(ε|b), on the inputbaab. The following sequenceQ1 . . .Q5 is calculated:

Q1 = {q0} !baab
Q2 = {q0} b!aab
Q3 = {q0,q1,q2,q3,q4,q6} ba!ab
Q4 = {q0,q1,q2,q3,q4,q6} baa!b
Q5 = {q0,q5,q6} baab!

The exclamation mark is used to show the current position in the input string. To
the left of the exclamation mark is the already processed input, and to the right is the
unprocessed part.

Since the end stateq6 is in Q3, Q4 andQ5, but not inQ1 or Q2, we conclude that the
empty string and theb at the start of the input do not match our pattern, but some suffix
of the stringsba, baa, andbaabdoes. Now, using a rather simple recursive algorithm
on the sequence of statesQ, a full parse tree of any of these matches can be built.

Kearns’s algorithms are used for example in the TLex [24, 26] code generator.

2.3.4 Others

Dubé-Feeley Parse Tree Automata

Dubé and Feeley proposed an algorithm for regular expression parsing in their paper
[13]. Their algorithm usesO(|r||w|) space for patternr and stringw, like Kearns’s
algorithm.



CHAPTER 2. SUBMATCH ADDRESSING FOR REGEXP MATCHING 14

Combinatorial Approaches

Myers et al [40] showed an algorithm for parsing regular expressions which takes
O(c4kPN) time and space, wherec is the number of tagged subexpressions (subex-
pressions for which submatch addressing is wanted),k is the number of properly nested
subexpressions in the pattern,P is the size of the regular expression pattern, andN is the
length of the input string. They note that it would be possible to modify their algorithm
to get anO(cMRPN+TR) time and space algorithm, whereMR andTR are factors which
depend on the pattern searched. In the worst case,MR andTR still grow exponentially
with P. In any case the space complexity is dependent of the length of the string and
therefore the algorithm is not suitable for partial parsing needed in submatch addressing.



Chapter 3

Automata with Augmented
Transitions

In this chapter I propose a new method for solving the submatch addressing problem ef-
ficiently. A new model of computation created by augmenting transitions of traditional
finite automata to manipulate location data is presented. The model is applied to solve
the submatch addressing problem. Algorithms to efficiently simulate the augmented
automata are given.

This chapter also discusses some problems related to submatch addressing, namely
full parsing and approximate regular expression matching. These problems can be
solved by generalizing the augmented transition model described in the next section.

3.1 Nondeterministic Automata with Tagged Transitions

To solve the submatch addressing problem (and with some generalizations a range of re-
lated problems) using automata, I propose a model where transitions can be augmented
with tags. These augmented transitions are calledtagged transitions. Tags are of the
form tx, wherex is an integer. Each tag has a corresponding variable which can be set
and read, and when a tagged transition is used, the current position in the input string is
assigned to the corresponding variable.

ε/t0
0 1

Figure 3.1: A tagged transition

If a tag is unused, it has a special value,−1. Initially all tags are unused and have
this value. A tag and its variable are synonymous, so if we refer, say, to the variablet5,
we mean the variable of tagt5. Figure3.1shows how tagged transitions are marked in

15
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a graph. For untagged transitions,ω is used to denote that there is no tag. Usually the
/ω is omitted from graphs so thata/ω is writtena andε/ω is writtenε.

At first glance automata with tagged transitions are reminiscent of finite-state trans-
ducers sometimes used for parsing purposes [22, 49, 50], but the semantics are different.
We are interested in a single path which results in a final state with a given input string,
and want to know, in addition to which tags have been encountered, the places in the
input string where they were last seen. The following definitions formalize this idea.

Definition 3.1 A nondeterministic finite automaton with tagged transitions, or TNFA,
is a 7-tupleM = 〈K,T,≺T ,Σ,∆,s,F〉, where

K is a finite set ofstates,

T is a finite set oftags, ω ∈ T,

≺T is a total order on items ofV. V is the set of all functions fromT−{ω} to
N∪{−1}. Members ofV are calledtag value functions.

Σ is analphabet, i.e. a finite set of symbols,

∆ is thetransition relation, a finite subset ofK×Σ∗×T×K.

s∈ K is theinitial state, and

F ⊆ K is the set offinal states. �

The meaning of a quadruple〈q,u, t, p〉 ∈ ∆ is thatM, when in stateq, may consume
a stringu from the input string, set the value oft to the current position in the input
string, and enter statep.

Definition 3.2 A configurationof M is an element ofK×Σ∗×Σ∗×V, where the first
item is the current state, the second item is the processed part of the input string, the
third item is the unprocessed part of the input string, and the fourth item is a tag value
function giving a value for each tag. The initial tag values are specified byv0 = (T−
{ω})×{−1}. An initial configurationis a quadruple〈s,ε,w,v0〉 for some input string
w. �

Definition 3.3 The relation`M between configurations (yields in one step) is defined
as follows: 〈q, p,u,v〉 `M 〈q′, p′,u′,v′〉 if and only if there arew ∈ Σ∗ andt ∈ T such
thatu = wu′ and〈q,w, t,q′〉 ∈ ∆. Thenp′ = pwand

v′(x) =
{
|p′| if t 6= ω andx = t
v(x) otherwise.

We definè ∗M to be the reflexive, transitive closure of`M. A stringw∈Σ∗ is acceptedby
M if and only if there is a stateq∈F and a functionv such that〈s,ε,w,v0〉 `∗M 〈q,w,ε,v〉.
�
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q0

q1

q2

q3

a/t0

a/t1 b

b

Figure 3.2: An example TNFA

Example 3.1 Figure3.2shows a simple example TNFA. The automaton is drawn as a
directed graph with certain additional information incorporated into the picture. Like
traditional finite automata, states are represented by nodes, and transitions by arrows
labeled withw/t from nodeq to q′ whenever〈q,w, t,q′〉 ∈ ∆. The initial state is shown
by a wedge shape, , and final states are indicated by double circles. For the automaton
in Figure3.2M = 〈K,T,≺T ,Σ,∆,s,F〉, where

K = {q0,q1,q2,q3}

T = {t0, t1}

Σ = {a,b}

s= q0

F = {q3}

and∆ is the relation tabulated below. We do not care about≺T for now, and can leave
it undefined.

q w t q′

q0 a t0 q1
q0 a t1 q2
q1 b ω q3
q2 b ω q3

Clearly the languageL(M) accepted byM is {ab}.

From the initial configuration〈q0,ε,ab,v0〉 the following sequence of move can
ensue:

〈q0,ε,ab,v0〉 `M 〈q1,a,b,v1〉
`M 〈q3,ab,ε,v1〉

where

v1(x) =
{

1 if x = t0
−1 if x = t1
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Thus〈q0,ε,ab,v0〉 `∗M 〈q3,ab,ε,v1〉 andab is accepted byM. It is also possible to reach
the final state in the following way:

〈q0,ε,ab,v0〉 `M 〈q2,a,b,v
′
1〉

`M 〈q3,ab,ε,v′1〉
where

v′1(x) =
{
−1 if x = t0
1 if x = t1

Therefore also〈q0,ε,ab,v0〉 `∗M 〈q3,ab,ε,v′1〉. �

Theorem 3.1 The language accepted by any TNFA is regular.

Proof outline. The proof is by reduction from TNFA to traditional NFA without chang-
ing the matched language. A TNFA can be reduced to an NFA by replacing all tags
by −1 without changing the possible configurations reached with`M when tag value
functions are disregarded. Then`M becomes equivalent to the corresponding operator
defined for NFAs (see, for example, [34]), and it is clear that the accepted language is
regular. �

As demonstrated by Example3.1, for a particular stringw and a machineM, there
may be several differentq andv which satisfy〈s,ε,w,v0〉 `∗M 〈q,w,ε,v〉. In order for the
results of the computation to be predictable and thus more practical, we must somehow
be able to determine which particular values ofq andv we choose as the result.

Indeed, there are cases for which computing all possible configurations reachable
from the initial configuration by consuming an input string is not even computationally
feasible. The number of different possible configurations can be exponentially large.

To choose between differentq, we can simply assign each final state a unique prior-
ity and choose the one with the highest priority. This is basically what lexical analyzers
typically do when two or more patterns match the same lexeme. For example,lex [32]
chooses the pattern specified earliest in the pattern list whenever several patterns match
the same string. We can also leave the decision to the user of the automaton and make
the automaton return a set of possible pairs〈q,v〉 whereq is a final state andv is the
corresponding tag value function.

When choosing between differentv (tag value ambiguity), the situation is similar;
we need some kind of ordering for tag values also. This is where≺T comes in. It is
used as a way to prioritize different tag value configurations over others.

Definition 3.4 We define another binary relation�M on configurations, (yields tag-wise
unambiguously in one step): 〈q, p,u,v〉 �M 〈q′, p′,u′,v′〉 if and only if for any configu-
rationα for which 〈s,ε, pu,v0〉 �∗M α andα `M 〈q′, p′,u′,v′′〉 it holds that eitherv′ = v′′

or v′ ≺T v′′.

As before,�∗M is the reflexive, transitive closure of�M. A stringw∈ Σ∗ is tag-wise
unambiguously acceptedby M if and only if there is a stateq∈ F and a functionv such
that〈s,ε,w,v0〉 �∗M 〈q,w,ε,v〉. �
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Note that the definitions of�M and�∗M are mutually recursive. It is still possible to
compute�∗M effectively, using an iterative process, for any automaton and input string.
Examining the definition a little further reveals that the initial configuration can be used
as the starting point of the computation. This is because the initial configurationci is
the only configuration in the beginning for which we know thatci �

∗
M ci . Proceeding in

a breadth-first manner always choosing at most one path reaching any state is a fairly
efficient strategy in computing�∗M. Algorithms3.4and3.5 later in this chapter show a
way to compute�∗M efficiently.

Example 3.2 For the automaton of the previous example (see Figure3.2) and stringab,
the initial configuration is〈q0,ε,ab,v0〉. Due to reflexivity,〈q0,ε,ab,v0〉 �∗M 〈q0,ε,ab,v0〉.
Because〈q0,ε,ab,v0〉 `M 〈q1,a,b,v1〉 and〈q0,ε,ab,v0〉 `M 〈q2,a,b,v

′
1〉 (see the previ-

ous example), we have also

〈q0,ε,ab,v0〉 �M 〈q1,a,b,v1〉

and
〈q0,ε,ab,v0〉 �M 〈q2,a,b,v

′
1〉

We do not need to choose the “winners” for statesq1 andq2, since there is only one path
from the initial configuration to each of these states.

Note that if α �M β then alsoα �∗M β . The previous example shows also that
〈q1,a,b,v1〉 `M 〈q3,ε,ab,v1〉 and〈q2,a,b,v0〉 `M 〈q3,ε,ab,v′1〉. Now we need to use
≺T to choose one to be the tag-wise unambiguous step which reaches stateq3. If v1≺T
v′1, then

〈q1,a,b,v1〉 �M 〈q3,ab,ε,v1〉

and
〈q0,ε,ab,v0〉 �

∗
M 〈q3,ab,ε,v1〉

The other possibility is thatv′1≺T v1, then

〈q2,a,b,v0〉 �M 〈q3,ab,ε,v′1〉

and
〈q0,ε,ab,v0〉 �

∗
M 〈q3,ab,ε,v′1〉

�

Theorem 3.2 For a string w and a TNFA M, if v0 �
∗
M 〈q, p,u,v〉 for some q∈ K, p, u,

and v∈V, then v is unique.

Proof. The proof follows trivially from Definition3.4. If v0 �
∗
M 〈q, p,u,v〉, thenv is

the minimum tag value function, as per≺T , for which the otherwise same configuration
can be reached with̀M from some previous configuration reached by�∗M. Thereforev
must be unique, since≺T is a total order. �
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Theorem 3.3 If a string w is accepted by M, it is also tag-wise unambiguously accepted
by M.

Proof outline. As can be seen from the definition of�M, a configurationc′ can be
reached from another configurationc if c `M c′. There is an additional restriction that
the tag value function inc′ must be the minimal one for the state reached with�∗M for the
same input string prefix. This restriction does not prevent any state from being reached
with �M if it is reached with`M, it only cuts down the number of possible tag value
functions to exactly one. The conclusion is that if a state is reachable with`M, it is also
reachable with�M, and the theorem follows. �

The point of�∗M is that it can be used to efficiently compute the minimum tag value
functions of final configurations reachable with an automaton for an input string. How-
ever, depending on the properties of the automaton,�∗M does not always find the correct
minimum tag value function that would be found by computing all possible final con-
figurations with̀ ∗

M and finding from these the minimum tag value function.

Let us explore in more detail what properties of the automaton and≺T are necessary
for `∗M and�∗M to give the same answer when searching for the minimum tag value
function.

Definition 3.5 (consistency)LetW be the set of strings which are tag-wise unambigu-
ously accepted by an automatonM. That is, for every stringw∈W

〈s,ε,w,v0〉 �
∗
M 〈q,w,ε,v〉

for someq∈ F andv∈V. ThenM is consistentif for everyq′ ∈ F andv′ ∈V for which

〈s,ε,w,v0〉 `
∗
M 〈q′,w,ε,v′〉

we have that ifq′ = q thenv≺T v′ or v = v′. �

In other words, an automaton is consistent if�∗M yields the same tag value functions
in the final states as the minimum tag value functions computed with`∗M.

It is not immediately obvious that any usable class of consistent nontrivial TNFAs
exist. But, as it turns out, there is a class of consistent TNFAs which can be used to solve
the submatch addressing problem, which is quite enough for most practical applications.

Let va andvb be two tag value functions such thatva≺T vb. Let posbe some integer
such thatpos≥ va(tx) andpos≥ vb(ty) for any tx ∈ T andty ∈ T. Also let tk ∈ T be
some tag and

v′a(t) =
{

pos if t = tk
v′a(t) otherwise.

v′b(t) =
{

pos if t = tk
v′b(t) otherwise.
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The above is a formal description of a situation where the tag value functionva wins
another tag value functionvb. A change to the functions later, by changing the value
of some tagtk to the current position given bypos, would yield the modified tag value
functionsv′a andv′b. If we want to find the globally minimal tag value function, it must
then hold thatv′a≺T v′b, or v′a = v′b. For if it were thatv′b≺T v′a, thenv′a would certainly
not be the minimum value. But�M would have already chosenva earlier, andv′b would
never even be computed.

So to summarize, in a consistent automatonM, if �M chooses some tag value func-
tion va over another tag value functionvb, then it must be certain that no later tag en-
countered would yield a situation wherevb should in fact have been chosen instead of
va.

From now on we will restrict ourselves to≺T of the following form. Letva ∈V and
vb ∈V be some tag value functions. Thenva≺T vb if and only if

∃tx ∈ T : (tx ∈minimizedand(va(tx)< vb(tx)
and∀ty ∈ T, 0≤ y< x : va(ty) = vb(ty)))

or (tx /∈minimizedand(va(tx)> vb(tx)
and∀ty ∈ T, 0≤ y< x : va(ty) = vb(ty)))

(3.1)

Hereminimizedis a set which contains the tags whose values we want to minimize.
The values of tags which are not inminimizedare maximized.

Another restriction is put on tags, we will allow each tag occur at exactly one tran-
sition. The TNFA definition would allow for multiple occurrences of the same tag,
although it is not immediately clear whether this could be useful.

Now we are ready to analyze whenva ≺T vb if and only if v′a ≺T v′b or v′a = v′b. In
equation3.1there is always some minimumx for whichva(tx) andvb(tx) differ, and for
all y less thanx the valuesva(ty) andvb(ty) are the same. If we define new tag value
functionsv′a andv′b like above by changing the value of some tagtk, there are three
cases. The first two cases are trivial, the third is less so.

• If k< x thenv′a≺T v′b, becausev′a(tk) = v′b(tk) andva(tk) = vb(tk).

• If k> x thenv′a≺T v′b, becausex is the minimum number for whichv′a(tx) 6= v′b(tx),
andv′a(tx) = va(tx) andv′b(tx) = vb(tx).

• If k = x then the situation is a bit more complicated. Each tag occurs exactly once
in the automaton, andtx has already been encountered at least once, because it
has different values inva andvb. If k = x happens, then the same tag is encoun-
tered again. Then there must be a cycle in the automaton containingtk. But now
v′a(tk) = v′b(tk) = pos, and it seems to be difficult to make any assumptions on the
values of the rest of the tagstr , r > k, which determine whetherv′a≺T v′b.

Figure3.3illustrates this situation. The arbitrary pathP2 along with the transition
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ε/tx

P2

P1

Figure 3.3: Illustration to analyze TNFA consistency.P1 andP2 are arbitrary paths.

labeledε/tx constitutes a cycle.P1 is a path from the target state of thetx transition
to a final state. There may be several differentP1 in a TNFA.

Because it seems difficult to reason anything clever about tagstr such thatr > k,
we will resort to an easy way out. We look for situations such that the values of
tr , r > k do not actually matter. There are at least three relatively simple cases:

– All tr , r > k occur in allP2. Then whatever values eachtr have would be
overwritten to the same values by`∗M, andv′a = v′b.

– All tr , r > k occur in all P1. Then it does not matter whetherv′a ≺T v′b,
v′a = v′b, or v′b≺T v′a, because the tags which decide this will be overwritten
anyway by the time a final state is reached.

– For any path from the initial state to any of the states onP2 no tagtr , r > k
must occur. In this casev′a = v′b, because all tagstr , r > k are unused.

Now we have learned some simple restrictions which guarantee the consistency of
a TNFA which meets these restrictions. The next section shows how to construct a
consistent TNFA for any submatch addressing problem.

3.1.1 Solving the Submatch Addressing Problem Using Tags

Automata with tagged transitions provide an elegant solution to the submatch address-
ing problem. It is well known that as a formalism for specifying strings, regular ex-
pressions and finite automata are equivalent in that they both describe the same sets
of strings [34, 48, 51]. There are many ways to transform regular expressions into
nondeterministic finite automata which recognize the language defined by the regular
expression. Perhaps the most well-known method is Thompson’s construction [5] and
similar inductive methods [34, 51].

Regular expressions with tagsare similar to normal regular expressions (see Section
2.1) with one addition; one may write tags of the formtx straight into the regular expres-
sions. A tag matches the empty string and has the side-effect that the current position in
the input string is assigned to the tag’s variable.

TNFAs can be constructed for regular expressions with tags by modifying Thomp-
son’s construction [5] to handle tags.
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Definition 3.6 (Modified Thompson’s construction) A regular expressionE over an
alphabetT is transformed into an nondeterministic finite automatonM(E) with input
alphabetT. For allE, M(E) has exactly one final state. The final state is distinct from
the initial state and has no transitions leaving from it. Similarly, there are no transitions
to the initial state.

To avoid redundancy in the drawings, a partial automatonM′(E) is usually shown
instead ofM(E). The difference betweenM′ andM is such thatM′(ta(E)tb) = M(E). In
other words, inM(E) the first and last transition are tagged with tagsta andtb, respec-
tively. The tags are such thata andb are smaller than the number of any tag occurring
in M(E), anda 6= b. Tagta is minimized andtb is maximized, so that≺T can be written
down in the form of Equation3.1on page21.

The following is a list of recursive rules to construct a consistent TNFA for any
regular expression.

• M′(ε) is

ε

i f

Herei is a new initial state andf a new final state. Clearly, the language recog-
nized by this TNFA is{ε}.

• For a∈ Σ, M′(a) is

a
i f

Again i is a new initial state andf a new final state. This machine recognizes{a}.

• For tx ∈ T, M′(tx) is

ε/tx
i f

This machine recognizes{ε}, with the side-effect that the current position in the
input string is assigned totx.

• For the regular expressionE1|E2, construct the following composite TNFAM′(E1|E2).
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ε

εε

ε

i f

M(E2)

M(E1)

Herei is a new initial state andf a new final state. There is a transition onε from
i to the start states ofM(E1) andM(E2). There is a transition onε from the final
states ofM(E1) andM(E2) to the new final statef . The initial and final states of
M(E1) andM(E2) are not initial or final states ofM(E1|E2). Note that any path
from i to f must pass through eitherM(E1) or M(E2) exclusively. Thus, we see
that the composite TNFA recognizesL(E1)∪L(E2).

• For the regular expressionE1E2, construct the composite TNFAM′(E1E2):

i f

M(E1) M(E2)

The initial state ofM(E1) becomes the initial state of the composite TNFA and
the final state ofM(E2) becomes the final state of the composite TNFA. The final
state ofM(E1) is merged with the initial state ofM(E2); that is, all transitions
from the initial state ofM(E2) become transitions from the final state ofM(E1).
The new merged state loses its status as a start or accepting state in the composite
TNFA. A path fromi to f must go first throughM(E1) and then throughM(E2)
and no edge enters the initial state ofM(E1) or leaves the final state ofM(E2),
there can be no path fromi to f that travels fromM(E2) back toM(E1). Thus,
the composite TNFA recognizesL(E1)◦L(E2).

• For the regular expressionE∗, construct the composite TNFAM′(E∗):
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ε ε

i f

ε

ε

M(E)

Here i is a new initial state andf a new final state. In the composite TNFA, we
can go fromi to f directly, along an edge labeledε, representing the fact thatε

is in (L(E))∗, or we can go fromi to f passing throughM(E) one or more times.
Clearly, the composite TNFA recognizes(L(E))∗.

• For the parenthesized regular expression(E), useM(E) itself as the TNFA.

• For a regular expression marked for submatch addressing,{E}, useM(E) as the
TNFA. The tags in the first and last transition ofM(E) will give the submatch for
E after a successful match.

�

3.1.2 Efficient Simulation

Simulating a TNFA means computing�∗M using some algorithm. This section discusses
algorithms to compute�∗M, starting from a simple but inefficient version and gradually
improving the algorithm to finally get a sufficiently efficient algorithm.

As already suggested in conjunction with Definition3.4, the best way of computing
�∗M is to follow all possible paths in parallel. Since we are interested in only one set of
tag values, it is possible to throw away paths which will result in unwanted tag values,
so that the total number of paths we consider at each instant does not grow over a
certain limit. To be precise, this pruning can be done at each state after each consumed
input symbol so that we need to remember at most as many paths as there are states in
our automaton. This idea is already incorporated into the definition of�M, and in this
section a pseudo-code algorithm is given to efficiently calculate�∗M for an automaton
and input string.

All the algorithms in this section work on a nondeterministic tagged automaton
M = 〈K,T,Σ,∆,s,F〉.

The following is an algorithm to calculate theε-closureof a set of states, taken from
[5]. It takes as an argument a set of TNFA statesQ⊆ K. The algorithm computes the
set of all nodes reachable fromQ using onlyε-labeled edges of the TNFA. The stack
holds states whose edges have not yet been checked forε-labeled transitions.
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Algorithm 3.1 (ε-closure)
1 push each state inQ ontostack
2 initialize result to Q
3 while stackis not emptydo
4 popq1, the top element, off ofstack
5 for eachq2 such that〈q1,ε, t,q2〉 ∈ ∆ for somet do
6 if q2 is not inresult then
7 addq2 to result
8 pushq2 ontostack
9 endif
10 done
11 done
12 return result

This is a fairly efficient algorithm, takingO(|∆|) worst-case time andO(|K|) worst-
case space when implemented reasonably. When simulating a TNFA, we also need to
calculate the set of tags encountered on the path to each reachable state. The following
algorithm calculates thetaggedε-closureof a set of TNFA statesQ⊆K. The algorithm
was obtained by modifying theε-closure algorithm to operate on pairs〈q,k〉 where
q∈Q is a state andk⊆ T is the set of tags seen so far.
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Algorithm 3.2 (taggedε-closure)
1 for each stateq in Q, push〈q, /0〉 ontostack
2 initialize result to the items instack
3 while stackis not emptydo
4 pop〈q1,k〉, the top element, off ofstack
5 for eachq2 andt such that〈q1,ε, t,q2〉 ∈ ∆ do
6 if 〈q2,k∪{t}〉 is not it result then
7 add〈q2,k∪{t}〉 to result
8 push〈q2,k∪{t}〉 ontostack
9 endif
10 done
11 done
12 return result

Algorithm 3.2 returns the set of all pairs〈q,k〉 whereq is a state reachable from
some statep in Q using onlyε-transitions andk is the set of tags encountered on the
path fromp to q. There may be several〈q,k〉 with the sameq but differentk, because
there may be several different paths with different tags toq from the states inQ.

εε

· · ·
ε/t0 ε/t1

q0 q1 qnq2

ε

Figure 3.4: Worst case for Algorithm3.2

The time and space complexity of Algorithm3.2is O(|K|2|T|). The set of all possi-
ble subsets ofT is 2T , so the result can contain at most|K| times|2T | elements. Figure
3.4shows an example of a TNFA with which this worst case behavior occurs. From any
stateq in {q0,q1, . . . ,qn} any state can be reached by following a path which contains
any subset of the tags in{t0, t1, . . . , tn−1}. Thus tagged-ε-closure(q) for anyq is of size
(n+1)2n.

The next algorithm uses≺T to choose exactly one set of tags for each reachable state
in an attempt to keep the space requirements reasonable. After all, we are interested only
in the minimal tag value functions.
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Algorithm 3.3 (tagged≺T -minimal ε-closure)
1 initialize result to /0
2 for each item〈q0,v0〉 in W do
3 for each item〈q, t〉 in tagged-ε-closure({q0}) do

4 let v(x) =
{

pos if x∈ t
v0(x) otherwise

5 if result(q) is definedthen
6 if v≺T result(q) then
7 replaceresult(q) with v
8 endif
9 else
10 setresult(q) to v
11 endif
12 done
13 done
14 return result

In this algorithm,result is a function fromK to V. As input the algorithm takes a
set of pairsW. Each item〈q,v〉 in W consists of a TNFA stateq∈ K and a tag value
functionv associated with that state.

The algorithm calls the (ambiguous) taggedε-closure for each item inW, and com-
putes the new tag value functions according to what tags have been encountered. In
result the winning tag values for the reached states as per≺T are kept. Since calls to
tagged-ε-closureare made, Algorithm3.3takesO(|W|CT |K|2|T|) time, whereCT is the
time to perform a≺T comparison.

The culprit of this algorithm is the way it gathers exponential worst-case size sets
of items and then compares their elements to find out the minimum tag value functions.
The following algorithm computes the unambiguous taggedε-closure as defined by�∗M,
which is equivalent to Algorithm3.3if the automaton is consistent (see Definition3.5).
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Algorithm 3.4 (���M ε-closure)
1 for each pair〈q,v〉 in W, addq to queue
2 initialize result to W
3 for eachq in K setcount(q) to the input order ofq
4 while queueis not emptydo
5 remove the first item,q1, from queue
6 for eachq2 andt such that〈q1,ε, t,q2〉 ∈ ∆ do

7 let v2(x) =
{

pos if x = t andt 6= ω

v1(x) otherwise
8 if result(q2) is definedand v2≺T result(q2)

or result(q2) is undefinedthen
9 setresult(q2) to v2
10 decreasecount(q2) by one
11 if count(q2) = 0 then
12 prependq2 to queue
13 setcount(q2) to the input order ofq2
14 else
15 appendq2 to queue
16 endif
17 endif
18 done
19 done
20 return result

This algorithm handles the case in Figure3.4 in linear time, which is naturally a
significant improvement to Algorithm3.3. Note, however, that Algorithm3.3 and this
algorithm do not solve the same problem, and therefore do not always return the same
result. Algorithm3.4solves a different, more restricted, problem.

To be specific, this algorithm computes the reflexive transitive closure of�M over
ε-transitions, while Algorithm3.3 computes the closure of̀M over ε-transitions and
then uses≺T to choose at most one tag value function for each state. If the automaton
is consistent (see Definition3.5) then these problems are the same; in general they are
not.

The complexity of Algorithm3.4 is O(|T||∆|CT log|T|). The term log|T| comes
from using a functional data structure [15, 44, 45] for tag value functions,|T| is present
because every tag may need to be set.|∆| andCT are present because the whole graph
may need to be traversedCT times. Figure3.5shows a worst case for Algorithm3.4.

The following algorithm simulates a consistent TNFAM = 〈K,T,Σ,∆,s,F〉 on an
input string. The algorithm steps through the set of possible�∗M configurations by con-
suming one input symbol at a time.
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ε
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ε
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ε
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ε

q4n−2
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Figure 3.5: A worst case for Algorithm3.4

Algorithm 3.5 (Simulating a TNFA)
1 initialize reachto �M-ε-closure({〈s,v0〉})
2 initializeposto 0.
3 while pos< |w| do
4 fetch the next input symbolc from w
5 initialize reachNextto /0
6 for each item〈q,v〉 in reachdo
7 for each transition〈q,c,ω, p〉 in ∆ do
8 add〈p,v〉 to reachNext
9 done
10 done
11 setreachNextto �M-ε-closure(reachNext)
12 swapreachandreachNext
13 setposto pos+1
14 done
15 return {〈q,v〉 | q∈ F, 〈q,v〉 ∈ reach}

Given a TNFA and an input stringw, this algorithm computes the set of pairs〈q,v〉
such that〈s,ε,w,v0〉 �∗M 〈q,w,ε,v〉. In other words, the algorithm returns all ways that
the stringw is tag-wise unambiguously accepted by the automaton (see Definition3.4
on page18). If w is not accepted, the algorithm returns an empty set.

For simplicity, the algorithm assumes that onlyε-transitions can be tagged, and that
only ε-transitions and transitions on single input symbols are allowed. Any TNFA can
be easily converted to another TNFA which follows this restriction, so generality is not
lost by imposing these restrictions.
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The formation ofreachNexton lines 4–10 takesO(∆) time. Each call tounambiguous-
tagged-ε-closureon line 11 takesO(|T||∆|CT log|T|) time, as discussed above. For
each input symbol, both of the above are done exactly once, so the time complexity
of the whole algorithm isO(T logTMCTN), whereN is the length of the input string.
Particularly, ifCT = O(T), then the algorithm takesO(NMT2 logT) time in the worst
case.

3.2 Deterministic Automata with Tagged Transitions

There are many ways to simulate the operations of a TNFA deterministically, and Algo-
rithm 3.5in the previous section is one. As is the case with traditional nondeterministic
and deterministic automata, computations that can be performed by an TNFA can be
precomputed to form a deterministic automaton. Naturally, all possible tag values can-
not be enumerated finitely, but fortunately this is not necessary.

As with traditional finite automata, the usual time-space trade-offs apply; converting
a TNFA into a deterministic automaton may take a lot of time, but needs to be done only
once, and the resulting automaton can be implemented to process characters faster than
the algorithm in the previous section. A deterministic automaton may need much more
space to store than a corresponding nondeterministic automaton, and time and space
can be wasted in computing transitions that are never used. Simulating a TNFA takes
less space, but is slower than with a deterministic automaton. Finally, the lazy transi-
tion evaluation approach can be used, where a deterministic automaton is constructed
transition by transition as needed, possibly keeping only a limited number of previously
calculated transitions in a cache.

3.2.1 Converting Nondeterministic Tagged Automata to Deterministic Tagged
Automata

To account for the fact that a TNFA can be in many different states after reading some
input symbols, a state in the deterministic counterpart, TDFA, is a set of items. Each
item in the set describes one possible configuration the TNFA can be in. A situation
is the combination of the current state and tag values, and can be represented by a pair
〈s, t〉, wheres is a TNFA state andt is a value which describes the current value of all
tags.

Actually, t does not need to be an explicit description of the values, it can be just
a reference to a location (a pointer, if you will) which contains the actual description.
If we used explicit tag value descriptions as values oft, the number of different sets of
situations would be infinite. By using references instead, we gain two things. First, all
possible TDFA states can be finitely enumerated if we restrict ourselves to a finite set
of locations. Second, by swapping the contents of different memory locations we can
change a TDFA state to appear different without changing its meaning. This makes the
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TDFA matcher easier to implement.

Definition 3.7 To represent the idea of locations and references formally, we define an
addressto be a symbolai , wherei ∈ Nk for somek. The set of all addresses is denoted
by A. We also define a functionm from A to V representingmemory. HereV denotes
the set of tag value functions as in Definition3.2on page16. �

For example, to get the tag value function stored inmat addressan, we simply look
upm(an).

Definition 3.8 To describe operations onm and the tag value functions stored there,
we defineC to be the set of possibleinstructions. C consists of two parts,Cs andCc,
so thatC = Cs∪Cc. Cs is the set of all strings of the formset(n, t) wheren∈ Nk and
t ∈ T−{ω}. Cc is the set of all strings of the formcopy(a,b) wherea andb are inNk.
�

The meaning ofset(n, t) is that the tag value functionm(an) is changed so thatt
is mapped topos. It may be thatt already maps toposin which case nothing changes
whenset(n, t) is performed.

The meaning ofcopy(x,y) is that the value at addressax is copied to addressay.
The copy does not interfere with the original, so thatset-operations onm(ax) do not
changem(ay) or vice versa.

Instructions can be concatenated together to form sequences of instructions. These
sequences are bounded with brackets, and the instructions are separated by commas.
For example,[copy(0,1), set(1,0)] first copies the tag value functionm(a0) to m(a1),
and then changes the copy so thatm(a1)(0) = pos. The set of all possible instruction
sequences is denoted byC .

Definition 3.9 A deterministic finite automaton with tagged transitions, or TDFA, is a
7-tupleM = 〈K,Σ,δ ,s,m0,F,V〉, where

K is a finite set ofstates,

Σ is analphabet, i.e., a finite set of symbols,

δ is thetransition function, a function fromK×Σ to K×C .

s∈ K is theinitial state,

m0 is a function from addresses toV specifying theinitial tag values, and

F ⊆ K is the set offinal states. �

V is thefinal tag value selector, a function fromF to A.
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Figure 3.6: An example TNFA

Example 3.3 The algorithm is outlined by means of an example. The example TNFA
is shown in figure3.6. The TNFA corresponds to the regular expression{a∗}a∗a so
that〈0, t0〉 gives the submatch.

Now we begin to generate the TDFA, and the first step is to find the initial state.
The initial state of the TNFA isq0, and there is a taggedε-transition fromq0 to q1.
Following the definition of�∗M, the TNFA can stay in stateq0 (�∗M is reflexive) or use
the transition labeledε/t0 and enter stateq1. Formally,〈q0,ε,w,v0〉 �M 〈q1,ε,w,v1〉 for
anyw, wherev0 = {〈t0,−1〉} andv1 = {〈t0,0〉}.

From these considerations we form the initial state of the TDFA:

Q0 = {〈q0,a0〉, 〈q1,a1〉}

and the initial tag value functions

m0 = {〈a0,{〈t0,−1〉}〉, 〈a1,{〈t0,0〉}〉}

TDFA states are represented as sets of pairs〈qi ,an〉, whereqi is a TNFA state andan

is an address such thatm(an) is a tag value function specifying the current tag value
function for stateqi . This particular state can be interpreted to mean that a TNFA can
be either in stateq0 with m(a0) as the tag value function, or in stateq1 with m(a1) as
the tag value function.

Next, if the symbola is read, the TNFA can choose any of the following four actions:

• Move from〈q0,a0〉 back toq0. We take a copy ofm(a0) to some location, sayx.

• Move from〈q0,a0〉 back toq0 and then move toq1 usingt0. We again take a copy
of m(a0) to some locationy. Since at0 was encountered, we also need to modify
the copy so thatm(ay)(t0) = pos.

• Move from〈q1,a1〉 back toq1, and take a copy ofm(a1) to z.

• Move from〈q1,a1〉 to q2, and take a copy ofm(a1) to w.

From this we get the second state of the TDFA:{〈q0,ax〉, 〈q1,ay〉, 〈q1,az〉, 〈q2,aw〉}.
Note that a pair withq1 as the left item occurs twice in this set. This means that there
are two different ways we could reachq1, and we must choose one. Now we will make
an assumption; we assume that{〈t0,a〉} ≺T {〈t0,b〉} always, if a> b. While this is
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not true in general, we assume that it is true for the≺T that we are using. In this case
m(ay)(t0) > m(az)(t0) always becausem(ay)(t0) = posandposis the largest tag value
so far. Therefore alwaysm(ay)≺T m(az), and the unambiguous state is:Q1 = {〈q0,ax〉,
〈q1,ay〉, 〈q2,aw〉}.

We have not yet assigned concrete values forx, y andw. Now that we have the
whole unambiguous state in sight, we can freely choose any suitable locations for the
tag value functions. In this case, we can letx = 0, y = 1, andw = 2, and the final
unambiguous state is:

Q1 = {〈q0,a0〉, 〈q1,a1〉, 〈q2,a2〉}

We must add the instructions to create the proper tag value functions tom(a0),
m(a1), andm(a2) during the transition fromQ0 to Q1. So, we add to our transition
function the entryδ (Q0,a) = 〈Q1, [copy(1,2),copy(0,1),set(1,0)]〉.

Finally, we notice thatQ1 containsq2, which is a final state. Thus,Q1 is also
final, and we addQ1 to F . If the input string ends with the TDFA in stateQ1, then
corresponding TNFA would have to be in stateq2 in order to produce a match. The final
tag values will then be in the tag value function associated withq2, that is, ata2. To
reflect this, we add the entryV(Q1) = a2 to the final tag value selector functionV.

When the symbola is read while in stateQ1, the TNFA can choose any of the
following four actions:

• Move from〈q0,a0〉 back toq0. We take a copy ofm(a0) to locationx.

• Move from 〈q0,a0〉 back toq0 and then move toq1 usingt0. We take a copy of
m(a0) to locationy and modify it so thatm(ay)(t0) = pos.

• Move from〈q1,a1〉 back toq1, and take a copy ofm(a1) to locationz.

• Move from〈q1,a1〉 to q2, and take a copy ofm(a1) to locationw.

In the same way as before, we get the ambiguous state{〈q0,ax〉, 〈q1,ay〉, 〈q1,az〉,
〈q2,aw〉}. Like before,m(ay)≺T m(az) always, and the unambiguous state is{〈q0,ax〉,
〈q1,ay〉, 〈q2,aw〉}. But this is just the same asQ1 if we let x = 0, y = 1 andw = 2. Thus
we have a loop in our TDFA fromQ1 to Q1 on readinga. The corresponding transition
function entry isδ (Q1,a) = 〈Q1, [copy(1,2),copy(0,1),set(1,0)]〉.

Now the construction of the TDFA is complete. The TDFA is〈K,Σ,δ ,s,m0,F,V〉,
where

K = {Q0,Q1}

Σ = {a}

s= Q0

m0 = {〈a0,{〈t0,−1〉}〉, 〈a1,{〈t0,0〉}〉}
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F = {Q1}

V = {〈Q1,a2〉}

andδ is the function tabulated below.

q w q′ c
Q0 a Q1 [copy(1,2), copy(0,1), set(1,0)]
Q1 a Q1 [copy(1,2), copy(0,1), set(1,0)]

�

During the HIBASE project I implemented a TNFA to TDFA compiler prototype.
The compiler didn’t use the lazy transition evaluation approach, but always created the
full TDFA before processing input. The compiler source code, written in a prototype
functional programming language Shines [45], should be available from the WWW
sometime in the future athttp://hibase.cs.hut.fi/. Pseudo-code for the conver-
sion algorithm can be found in [31].

Because Shines is not optimized for computationally intensive tasks, but rather for
database applications, the performance of the TDFA implementation is modest. How-
ever, it did pass all tests for correctness, and shows that the algorithm outlined above is
feasible. The inner loop of the TDFA simulator is quite simple suggesting that an im-
plementation using a lower-level language, such as C [27], would probably be efficient.

3.3 Related Problems

The tagged transition model can be extended to a more generic model where transi-
tions are augmented with computable functions which manipulate some arbitrary data.
This makes it possible to create for example an automaton which counts the number
of times a certain transition is used. Using functional data structures [15, 44, 45] this
more generic model can be simulated efficiently. The following two sections show two
good examples of the ways the tagged transition model can be extended to solve related
problems.

3.3.1 Full Parsing

The submatch addressing algorithm can be extended to store full parse data and still
retain the same time complexity. Space complexity will rise toO(|w|), since an explicit
representation of a full parse tree cannot be stored in less space in the worst case.

To get full parse data, we must not discard old tag values when a tag is encountered
repeatedly, but store all the positions in the input string where tags were encountered.
This can be easily achieved by changing the new tag value function in the definition of
`M (on page16) to the following:
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v′(x) =
{
〈|p′|,v(x)〉 if t 6= ω andx = t
v(x) otherwise.

This new definition will accumulate all positions in the input string where tags were
seen into a list (lisp programmers will find this representation of lists as nested pairs
familiar) where−1 marks the end of the list. The definition of≺T will of course need
to be changed to compare the first values of the lists.

After this simple change a concrete parse tree can be built from the lists of tag values
easily inO(|w|) time.

3.3.2 Approximate Regular Expression Matching

The submatch addressing algorithm can be easily extended to an approximate regular
expression matching algorithm. Approximate pattern matching allows matches to be
approximate, that is, allows the matches to be close to the searched pattern under some
measure of closeness. One commonly used measure isedit-distance, also known as the
Levenshtein distance[33], where characters can be inserted, deleted, or substituted in
the searched text in order to get an exact match. Each insertion, deletion, or substitution
adds the distance, or cost, of the match.

There has been some previous work on approximate regular expression matching.
In [38] Mužátko presents nondeterministic automata for approximate regular expression
matching, but concludes that “simulation of a nondeterministic automaton is of a high
time complexity” without doing any concrete complexity analysis.

In [39] Myers and Miller give an algorithm to solve the problem inO(MP) time,
given a string of lengthM and a regular expression of lengthP. This is asymptotically no
worse than for the simpler problem of approximate matching of simple keywords. The
paper also gives anO(MP(M + P) + N2 logN) time algorithm for arbitrary increasing
gap penalties. In [29] Knight and Myers describe anO(MP(logM + log2P)) algorithm
for approximate regular expression matching with concave gap penalties [40].

Definition 3.10 (Approximate RE match) A string w matches the regular expression
E approximately with costc if somew′ ∈ L(E) can be transformed towwith c insertions,
deletions, or substitutions. �

Any string matches any regular expression with some cost, so a useful algorithm
is one that can be used to tell whether there is a match with a cost lower than some
threshold value, or to find the minimum cost. Some algorithms let the relative costs of
insertions, deletions and substitutions to be changed arbitrarily. These costs are denoted
by ci , cd, andcs, respectively.

The approximate matching algorithm is constructed by changing the modified Thomp-
son’s construction in Section3.1.1as follows:
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For a∈ Σ, M(a) is

a

./c← c+cii f
./c← c+cs

ε/c← c+cd

Herei is a new initial state andf a new final state. This machine recognizes:

1. {a}◦
n︷ ︸︸ ︷

Σ◦ . . .◦Σ with the side-effect thatc is increased bynci .

2.

n︷ ︸︸ ︷
Σ◦ . . .◦Σ with the side-effect thatc is increased bycd +nci .

3. Σ◦
n︷ ︸︸ ︷

Σ◦ . . .◦Σ with the side-effect thatc is increased bycs+nci .

Now, if we defineT, the set of tags, to contain onlyc and use plain integer compari-
son as≺T , the TNFA simulation algorithm becomes an algorithm which finds the mini-
mum cost for which the input string matches the regular expressions. Since|T|= O(1),
the algorithm takesO(MN) time to match a string of lengthN against a regular expres-
sion of sizeM.



Chapter 4

An Implementation

This chapter describes my implementation of a regular expression matcher which ap-
plies the algorithms studied in this thesis. The aim was to create a general purpose reg-
ular expression matching library; the library should be robust and sufficiently good for
a wide variety of uses. The TNFA matcher implementation, including the C language
source code, is available as free software. It can be downloaded from the WWW at
http://www.iki.fi/vl/libtre/. The proof-of-concept TDFA implementation dis-
cussed in Section3.2.1should be available from the WWW athttp://hibase.cs.hut.fi
sometime at the future.

A typical use for a general purpose matcher is searching for all non-overlapping
occurrences of relatively simple patterns from a long text. For example, a search-and-
replace utility in a text editor could be implemented in this way. The matcher should not
scan more text that absolutely necessary to find the next match — if the matcher would
scan the whole text even though the first match is returned, searching for successive
occurrences of the pattern will then take quadratic time. The implementation may not
even usestrlen() or similar for finding out the length of the text.

Another typical use case is searching for texts which match a pattern from a large
number of short texts. For example, the popular UNIX utilitygrep works this way;
each line of the input data is searched for a match and the matching lines are output.
Note that this use does not require any kind of submatch addressing.

A third typical use case is dividing a text into words or tokens which are described
using regular expressions. Traditionally this kind of processing has been done using
specialized tools, but there are situations where it makes sense to avoid using lexer
generators in favor of a library.

Most regular expression matching libraries require that the patterns must be com-
piled into some internal representation before they can be used for matching. Some
applications use a large number of regular expressions for various purposes, and com-
pile them when the application is started. If compilation takes a very long time, then

38
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the application takes a very long time to start. Therefore, compiling regular expressions
should be as fast as possible.

The POSIX standard is a widely used and accepted API for regular expression li-
braries, so it seemed natural to implement aPOSIX compatible matcher. This gives also
the benefit that are numerous other implementations to compare against.

A TNFA based implementation would be suitable for aPOSIX compatible matcher,
because of the restriction that compiling regular expressions should not take long. A
lazy TDFA generating algorithm might also be acceptable, but would be much more
complex and use a lot more memory, so I decided to go ahead with a TNFA implemen-
tation.

There are numerous methods for converting regular expressions to finite automata
[8, 9, 10, 46, 36], making an NFA matcher run faster [2, 41], reducing the space re-
quirements for the transition tables [4, 5, 12, 17, 52], and other useful methods and
tricks [18, 42, 53]. Most of these are probably applicable to TNFAs and TDFAs perhaps
with slight modifications.

4.1 Sacrificing Complexity

Any NFA with ε-transitions can be converted to an NFA withoutε-transitions. In the
worst case, the modified NFA hasO(n2) transitions ifn is the number of transitions in
the original NFA. This happens for example with NFA’s converted from regular expres-
sions of the form(a|a| . . . |a)∗ with Thompson’s construction. However, it is easier to
implement a fast simulation routine for an NFA withoutε-transitions.

Functional data structures [15, 44, 45] are also hard to implement very efficiently. A
tree-like functionalO(logn) time data structure is slower than a copyingO(n) time rou-
tine for smalln, due to overhead from reference counting or garbage collection, memory
allocation and freeing, and other constant factors rising from the more complicated im-
plementation.

Taking the above into consideration, I decided to implement an algorithm which is
based on TNFA’s withoutε-transitions. I also decided to use a copyingO(n) routine
for tag value sets, since the number of tags is usually very low in practice, and modern
computers are capable of copying small memory blocks very efficiently.

The resulting algorithm is described in the next section. It usesO(NM2T) time, but
is presumably faster than an implementation of theO(NMT2 logT)) time algorithm for
most practical patterns.
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4.2 Generating ε-free Tagged Automata from Regular Ex-
pressions

ε-free nondeterministic automata with tagged transitions can be generated from regular
expressions using a modified version of the method described in [5], Section 3.9. Note
that the aim here is to create anε-free nondeterministic automaton, not a deterministic
automaton. Section 3.9 of [5] targets for a deterministic automaton by first creating an
ε-free nondeterministic automaton as an intermediate phase.

A regular expression is represented by a syntax tree with basic symbols and tags
at the leaves and operators at the interior nodes. Symbol leaves in the syntax tree for
a regular expression are labeled by symbols in the alphabet. To each alphabet leaf (a
leaf not labeled byε or a tag) we attach a unique integer and refer to this integer as the
positionof the leaf.

To create anε-free TNFA for a tagged regular expressionE we first augment it by
forming the expression(E)#. The symbol # is not a part of the original alphabet and is
used to get a unique final state later.

The functionsnullable, firstpos, andlastposare calculated for each syntax tree node.
These can be formed using the inductive rules in Table4.1 by working up the syntax
tree from the bottom; in each case the inductive rules correspond to the three operators,
alternation, concatenation, and repetition. The rules forlastposare the same as those

Table 4.1: Rules for computingnullableandfirstpos.

Noden nullable(n) firstpos(n)
ε true /0
tx true /0

leaf at posi-
tion i

false {〈i, /0〉}

c1

|

c2
nullable(c1) or nullable(c2) firstpos(c1) ∪ firstpos(c2)

c1 c2

◦
nullable(c1) and nullable(c2)

if nullable(c1) then
firstpos(c1) ∪
addtags(firstpos(c2),

emptymatch(c1))
else

firstpos(c1)
endif

∗

c1
true firstpos(c1)



CHAPTER 4. AN IMPLEMENTATION 41

Table 4.2: Rules for computingemptymatch.

Noden emptymatch(n)
ε /0
tx {tx}

leaf /0

c1

|

c2

if nullable(c1) then
emptymatch(c1)

else
emptymatch(c2)

endif

c1 c2

◦
emptymatch(c1)∪emptymatch(c2)

∗

c1

if nullable(c1) then
emptymatch(c1)

else
/0

endif

for firstpos, but withc1 andc2 reversed, and are not shown.

The functionemptymatchis defined in Table4.2.

The functionaddtagstakes as arguments a set of pairs〈p, t〉 calledP and a set of
tagsT, wherep is a position andt is a set of tags. The function returns a new set of
pairs

{〈p, t ′〉 | 〈p, t〉 ∈ P andt ′ = t ∪T}

The first and second rules fornullablestate that ifn is a leaf labeledε or a tagtx, then
nullable(n) is true. The third rule states that ifn is a leaf labeled by an alphabet symbol,
thennullable(n) is false. In this case, each leaf corresponds to a single input symbol,
and therefore cannot generateε. The rest of the rules fornullable follow directly from
the algebraic properties of the corresponding operators.

As another example, the fifth rule forfirstpossays that if in an expressionrs, r
generatesε, then the first positions ofs “show through”r and are also first positions of
rs. Any tags which will be used inr when generatingε are added to the result. Ifr
does not generateε, then only the first positions ofr are the first positions ofrs. The
reasoning behind the remaining rules offirstposare similar.

When the functionsfirstposand lastposhave been computed for each node in the
tree, we can proceed to generate the transition relation∆ of theε-free TNFA. Basically,
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the transition relation tells us what positions can follow a position in the syntax tree
and which tags are used to get there. The transition relation is a set of quadruples
〈qa,u,T,qb〉, whereT is a set of tags. The meaning of such a quadruple is that the
TNFA, when in stateqa, may consume the input symbolu from the input string, set the
values of tags inT to the current position in the input string, and enter stateqb. Two
rules define can be used to compute all transitions from an annotated syntax tree:

1. If n is a catenation node with left childc1 and right childc2, and〈p, t〉 is an item
in lastpos(c1), then for each item〈p′, t ′〉 in firstpos(c2), add〈qp,u, t∪ t ′,qp′〉 to ∆.
Hereu is the input symbol corresponding to positionqp.

2. If n is a repetition node, and〈p, t〉 is an item inlastpos(n), then for all items
〈p′, t ′〉 in firstpos(n), add〈qp,u, t ∪ t ′,qp′〉 to ∆. As before,u is the input symbol
corresponding to positionqp.

If firstposand lastposhave been computed for each node,∆ can be computed by
making one depth-first traversal of the syntax tree.

The initial states and initial tag values are determined by thefirstposof the root
node. For example, iffirstpos= {〈1,{t0}〉,〈2,{t1}〉}, thenq1 andq2 are initial states.
The initial tag values atq1 are 0 fort0 and−1 for all other tags. The initial tag values at
q2 are 0 fort1 and−1 for all other tags.

Example 4.1 Figure4.1 showsfirstposand lastposfor the nodes in a syntax tree for
{(a|b)∗}abb#. Figure4.2shows theε-free TNFA computed from the annotated syntax
tree.

◦

b

◦ #

t0

b

◦

◦

◦

◦{〈1,{t0}〉,〈2,{t0}〉} {〈1, /0〉,〈2, /0〉}

{〈1,{t0}〉,〈2,{t0}〉}

{〈3, /0〉}

{〈4, /0〉}

{〈5, /0〉}

{〈6, /0〉}

{〈5, /0〉}

{〈4, /0〉}

{〈6, /0〉}

{〈4, /0〉}

{〈5, /0〉}

{〈6, /0〉}

/0 /0

{〈1, /0〉,〈2, /0〉}

{〈1, /0〉,〈2, /0〉}

{〈2, /0〉}{〈1, /0〉} a {〈1, /0〉}

∗

|

b

{〈1, /0〉,〈2, /0〉}

{〈1, /0〉,〈2, /0〉}

{〈2, /0〉}

a{〈3, /0〉} {〈3, /0〉}
{〈1,{t1}〉,
〈2,{t1}〉}

t1 /0/0

{〈1,{t0,}〉,〈2,{t0}〉,〈3,{t0, t1}〉}

{〈1,{t0,}〉,〈2,{t0}〉,〈3,{t0, t1}〉}

{〈1,{t0,}〉,〈2,{t0}〉,〈3,{t0, t1}〉}

{〈1,{t0,}〉,〈2,{t0}〉,〈3,{t0, t1}〉}

Figure 4.1:firstposandlastposfor nodes in syntax tree for{(a|b)∗}abb#.
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q1 q2 q3 q4 q5 q6

a
a b b

a b

b/t1
b

{t0, t1}

a/t1

{t0}
{t0}

Figure 4.2: Theε-free TNFA computed from the tree in Figure4.1

4.3 Eliminating Unnecessary Tags

It is often possible to remove some tags from a syntax tree without losing any submatch
addressing information. The used submatch addressing rules (the rules which are used
to decide which one of the set of possible submatches are chosen) affect tag elimination
in subtle, but complicated ways. Therefore I will not present an algorithm for elimi-
nating tags from an annotated syntax tree. Instead, a few examples are shown to give a
general idea of how such an algorithm might work.

◦

∗

◦

a t1

t0

Figure 4.3: AST for{a}∗

∗

a

t0 = e−1
t1 = e

Figure 4.4: Optimized AST for{a}∗

Example 4.2 The regular expression{a}∗ has a syntax tree shown in Figure4.3. This
can be changed to the one in Figure4.4without losing any submatch addressing capa-
bilities. In the box beside Figure4.4, esignifies the position of the next symbol after the
match. If the match has zero length, thene−1< e and the submatch addressing data
computed would be invalid. This situation can be checked as a special case. �

Example 4.3 The regular expressiona{b{c}|{d}∗}∗ has a syntax tree shown in Figure
4.5. This can be changed to the one in Figure4.6without losing any submatch address-
ing capabilities. As can be seen from the figures, tagst2 andt3 are combined intot ′1, and
tagst4 andt5 are combined intot ′2 and lifted outside the scope of the iteration operator.
Tagt0 has been left in its original position, andt1 has been removed altogether. �
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◦b

t2 ◦

c t3

◦

◦

∗

◦t0

◦

a

|

◦

t4 ◦

d t5

∗

t1

∗

◦

Figure 4.5: AST fora{b{c}|{d}∗}∗

◦

∗

|

◦

◦

c

◦

∗

b d

◦

a

t ′0

t ′1 t ′2

t0 = t ′0
t1 = e
t2 = t ′1−1
t3 = t ′1
t4 = t ′2−1
t5 = t ′2

Figure 4.6: Optimized AST fora{b{c}|{d}∗}∗
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Experiments

This chapter gives some experimental results which were obtained using the implemen-
tation discussed in the previous chapter.

The performance characteristics of regular expression matchers are complex mat-
ters. Depending on the used regular expressions and the strings being searched, the per-
formance of an implementation may vary significantly. Each implementation employs
a different set of optimizations and tricks which can be applied in different situations.

In addition to performance, another important characteristic of an implementation
is correctness. Surprising as it may seem, performance and correctness are often in-
timately related. Some implementations have bugs which speed up matching in some
cases, but cause incorrect results in some other cases. Therefore it does not make sense
to compare implementations with different semantics; the semantics of the matcher have
profound influence on inherent performance problems and optimizations.

My implementation isPOSIX compatible. There is no industry-wide agreement on a
realistic set of benchmarks forPOSIX regexp matchers. None have even been proposed.
Therefore, it would be possible to show results which suggest that my implementation
seems to be always faster than other implementations, or results which seem to indicate
that my implementation is typically slower than others.

For these reasons, I have tried to be very careful about what conclusions to draw
from the benchmark results. The results shown in this chapter should be mostly regarded
only as demonstrations of some of the characteristics of my implementation and some
other implementations.

45
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5.1 Test Setup

In addition to my TNFA implementation, the same benchmarks were also done for
GNU regex-0.121 and hackerlab version 20010609. Both libraries claim to bePOSIX.2
compatible, and are generally regarded to be of good quality. Both libraries are written
in the C programming language [27], and so is the TNFA matcher.

The tests consisted of timing the matching operationregexec for different patterns
and input strings of different lengths. The time used by the regex compilation operation
regcomp for different patterns was not tested.

The tests were performed on a PC with a Celeron 300A processor (running at
450MHz, with 128 KB L2 cache and a 100 MHz front side bus), 128 MB memory,
and running Linux 2.4.4. The used C compiler was the GNU C compiler (gcc), version
2.95.

Standard statistics techniques were used to calculate 95% confidence intervals for
the test results using the T-distribution. The deviations were negligible, so the results
presented in the next section can be considered quite accurate.

1 There are many different versions of GNU regex with the version label 0.12. I used the version
available fromftp://ftp.gnu.org/pub/gnu/prep/regex/.
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5.2 Test Results
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Figure 5.1: Test results for pattern(a)* and stringaaaa. . .

Figure5.1 shows the results for a very basic regular expression,(a)*, and string
aaaa. . .. Note the logarithmic scale on both axes. As can be seen from the figure, the
difference between hackerlab and the others is huge. Hackerlab performs very badly for
some reason. It takes over ten seconds to match a one kilobyte string with hackerlab
where the TNFA implementation scans something like 40 megabytes in the same time.

Table 5.1: Matching speeds for test 1

TNFA GNU regex hackerlab

3710000 cps 1190000 cps 901 cps
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Figure 5.2: Test results for pattern(a*) and stringaaaa. . .

Figure5.2shows the results for regular expression(a*), slightly different from the
regular expression in test 1 in terms of submatch addressing, and stringaaaa. . .. The
slow behavior of hackerlab does not apply to this case, and it fares much better this time.
GNU regex is now the slowest implementation taking about twice as much time as the
TNFA implementation and hackerlab.

Table 5.2: Matching speeds for test 2

TNFA GNU regex hackerlab

3710000 cps 1850000 cps 3130000 cps



CHAPTER 5. EXPERIMENTS 49

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1  10  100  1000  10000  100000  1e+06  1e+07  1e+08

T
im

e 
(s

ec
on

ds
)

String length

hackerlab-20010609
GNU regex-0.12

TNFA

Figure 5.3: Test results for pattern(a*)*|b* and stringaaaa. . .

Figure 5.3 shows the results for pattern(a*)*|b* and stringaaaa. . .. This test
illustrates a weakness in the backtracking algorithm used by GNU regex. Note the
logarithmic scale on both axes.

The time used by GNU regex grows exponentially with the length of the input.
At about 25 characters the matching time becomes too long in practice for any sensible
use. Both the TNFA implementation and hackerlab handle this test well, with the TNFA
implementation beating hackerlab by approximately 40%.

Table 5.3: Matching speeds for test 3

TNFA GNU regex hackerlab

3250000 cps N/A 2330000 cps
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Figure 5.4: Test results for pattern(a|a|. . .|a)* and stringaaaa. . . of length 220.

Figure5.4shows the results for pattern(a|a|. . .|a)* and stringaaaa. . .. This test
shows the worst case behavior of the TNFA matcher. Note that the changing parameter
in this test is the pattern, not the input string length as in the other tests. The length of
the text in this test was constant 10 megabytes.

In the worst case, the time used by the TNFA implementation grows quadratically
with the length of the pattern (see Section4.1). Neither GNU regex or hackerlab were
able to perform this test at all. GNU regex’s backtracking algorithm runs out of stack
space almost immediately. Hackerlab on the other hand showed nonlinear growth of
matching time when the input length (not the pattern length) was rising, and took over
two minutes to match a 32 kilobyte string with the regular expression(a|a)*. There
was no hope of getting results comparable with TNFA, so hackerlab was “disqualified”.

Table 5.4: Matching speeds for test 4

TNFA GNU regex hackerlab

N/A no result no result
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Figure 5.5: Test results for patternfoobar and stringaaaa. . .foobar

Figure5.5shows the results for patternfoobar and stringaaaa. . .foobar. This test
demonstrates the speed of the implementations when given a simple substring searching
task.

Hackerlab performs very well. This was anticipated, as hackerlab is based on DFA
simulation and submatch addressing is not needed at all for this test. For comparison,
Figure5.5 shows also the timings for the C functionstrstr, from the GNU C library
version 2.1.3, which locates a substring from a string.

Table 5.5: Matching speeds for test 5

TNFA GNU regex hackerlab strstr

8370000 cps 4180000 cps 17900000 cps 75600000 cps
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Figure 5.6: Test results for patterna*foobar and stringaaaa. . .foobar

Figure5.6shows the results for patterna*foobar and stringaaaa. . .foobar.

This test is a variation of the previous one. All implementations scan the input
slower than in the previous test, with roughly half the speed.

Table 5.6: Matching speeds for test 6

TNFA GNU regex hackerlab

3580000 cps 2540000 cps 7520000 cps
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Figure 5.7: Test results for pattern(a)*foobar and stringaaaa. . .foobar

Figure5.7shows the results for pattern(a)*foobar and stringaaaa. . .foobar.

This is another variation of test number five. Now submatch addressing is brought
in by adding the parentheses to the pattern. The TNFA matcher handles this case almost
as fast as the previous one. Both hackerlab and GNU regex slow down to about a fifth
of their speed in the previous test.

Table 5.7: Matching speeds for test 7

TNFA GNU regex hackerlab

3480000 cps 495000 cps 1620000 cps



CHAPTER 5. EXPERIMENTS 54

 0

 5

 10

 15

 20

 25

 0  2e+06  4e+06  6e+06  8e+06  1e+07  1.2e+07

T
im

e 
(s

ec
on

ds
)

String length

hackerlab-20010609
GNU regex-0.12

TNFA

Figure 5.8: Test results for pattern(a|b)*foobar and stringabbaba. . .foobar

Figure5.8shows the results for pattern(a|b)*foobar and stringaaaa. . .foobar.
This is yet another variation of test number five, with more complicated submatch ad-
dressing added by introducing the alternation operation and a string of randoma’s and
b’s before the suffixfoobar.

The speed of the TNFA matcher drops down to about 40 percent of the speed in the
previous test. GNU regex and hackerlab perform with approximately the same speed as
in the previous test.

Table 5.8: Matching speeds for test 8

TNFA GNU regex hackerlab

1400000 cps 440000 cps 1630000 cps
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5.3 Summary

Table 5.9: Matching speed summary

test number TNFA GNU regex hackerlab

1 3710000 cps 1190000 cps 901 cps
2 3710000 cps 1850000 cps 3130000 cps
3 3250000 cps N/A 2330000 cps
4 N/A no result no result
5 8370000 cps 4180000 cps 17900000 cps
6 3580000 cps 2540000 cps 7520000 cps
7 3480000 cps 495000 cps 1620000 cps
8 1400000 cps 440000 cps 1630000 cps

Table5.9 shows a summary of the test results. As can be seen from the table, the
TNFA implementation seems to perform rather well. While it is certain that these results
are not conclusive, and it is not even clear what a set of conclusive tests would consist
of (see the beginning of this chapter), it seems that the TNFA implementation has some
interesting qualities not present in GNU regex or hackerlab.

Perhaps the most convincing treat of the TNFA matcher is its predictability; the
matcher can perform reasonably well with any regular expression and input string.
When the input string grows longer, worst-case matching time increases always lin-
early.



Chapter 6

Future Work

Researching in more detail the nature of consistent TNFAs would be interesting. It
is easy to restrict the tag ordering function and the use of tags in a TNFA to ensure
consistency, but it would be interesting to know whether tags could be used without
restrictions if the tag ordering function is of the form in Equation3.1.

It is also an open problem whether TNFAs can be converted to TDFAs in full gen-
erality while retaining the simplicity required for good performance. An algorithm is
outlined in this thesis for doing the conversion and a proof-of-concept TDFA implemen-
tation in [31] is referred to, but problems with following the tag ordering function are
sidestepped. A C-language [27] implementation of a TDFA matcher would be required
to evaluate the performance gain compared to TNFAs in practice.

An implementation of the approximate regular expression matching algorithm out-
lined in Section3.3.2would be welcome. There are a few tools for approximate reg-
ular expression matching in the style ofgrep, and it would be interesting to see if
the TNFA-based algorithm makes a difference. It would also be sensible to finish the
POSIX matcher prototype, so it could be used as a drop-in replacement for other imple-
mentations.
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Chapter 7

Conclusion

The main objective of this thesis was to find an efficient solution to the submatch ad-
dressing problem, suitable to be used in a general purpose regular expression matching
library.

I evaluated several existing algorithms and found them problematic, either because
of exponential worst-case matching times or linear space consumption where constant
space would actually suffice. Some candidates could handle only a subset of all regular
expressions, which was not acceptable.

My proposed solution, tagged nondeterministic finite automata (TNFA), is an ex-
tension to traditional finite automata where transitions are augmented with operations
to keep track of submatch beginning and ending positions while matching. Algorithms
for efficiently simulating TNFAs with a single pass over the input string were given.

The TNFA algorithm is capable of finding submatches, decided by tags and the tag
ordering function which can be easily changed to accommodate a variety of submatch
addressing rules. The algorithm finds the solution in one linear-time pass of the in-
put string for any regular expression and input string. The space consumption during
matching is constant, depending only on the regular expression but not the input string.
In the author’s knowledge, this is a new result.

A POSIX.2 compatible TNFA matcher was implemented as a part of the thesis
work. The benchmarking results suggest that the implementation performs favorably
against some popular implementations of different algorithms solving the same prob-
lem. The TNFA matcher implementation, including the C language source code, is
available as free software. It can be downloaded from the WWW athttp://www.iki.fi/vl/libtre/.
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