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Hakulauseketta vastaavien osien etsiminen merkkijonoista on eri muodoissaan tarkea tietojer
lyteorian alue. Tama diplomity® keskittyy saanndéllisiin lausekkeisiin ja niiden maarittelemaar
leen kuuluvien merkkijonojen tehokkaaseen osittaiseen jasentamiseen. Osittainen jasentam
koittaa sdénndllisen lausekkeen mielivaltaisesti valittuja osalausekkeita vastaavien osamerkk
maarittdmista koko lausekkeen maaritteleméaéan kieleen kuuluvassa merkkijonossa.

Talla hetkella laajassa kaytdssé olevat algoritmit joko kuluttavat pahimmassa tapauksessa ek
tiaalisesti aikaa merkkijonojen tutkimiseen, kayttavat tilaa suoraan verrannollisesti sydtejonon
teen vaikka vakiotila riittaisi, tai pystyvat kasittelemaan vain sdannollisten lausekkeiden osajo
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nen tar-
jonojen

sponen-
pituu-
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Tassa diplomitydssa ehdotan uutta ratkaisua osittaiseen jasentamiseen, jossa kaytetaan epadetermi-

nistisia aarellisia automaatteja joiden siirtymia on laajennettu funktionaalisilla sijoitusoperaatia

ila.

Kehitetty algoritmi kdly sy6tteen vain kerran lapi, ja sen aikakompleksisuus pahimmassakin tapauk-
sessa on suoraan verrannollinen syétejonon pituuteen. Algoritmin kuluttama tila riippuu vain kayte-
tysta saanndllisestéd lausekkeesta eika lainkaan syétejonosta. Tydssa toteutettiin myds algoritmiin pe-
rustuvaPOSIX.2-yhteensopiva sdanndllisten lausekkeiden osittaista jAsentdmista suorittava hakukir-
jaston prototyyppi. Suuntaa-antavien kokeellisten mittausten perusteella prototyyppi suoriutuy hyvin
verrattuna eraisiin yleisesti kaytdssa oleviin toteutuksiin. Lisdksi algoritmin lineaarisen aikakomplek-

sisuuden vuoksi hauissa voidaan kayttdd mita tahansa saanndllistd lauseketta ilman kohtu
ajankayton vaaraa; tama ei ole ollut mahdollista aikaisemmilla toteutuksilla tai algoritmeilla.
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Notation and Abbreviations

(ng,n,,....N)

{x: P(x)}
O(g(n)
E|E,

AST
DFA
DFAS
NFA
NFAS
TDFA
TNFA

unordered set containing the itemd, . ..
empty set
empty string
closure of the languade
concatenation of languages andL,
language represented by regular expression
reflexive, transitive closure of binary relatiéh
transitive closure of binary relatidR
the set of natural numbef®,1,2, ...}
length of stringw
binary relation between configurationsidf
“yields in one step”
binary relation between configurationsidf
“yields tag-wise ambiguously in one step”
total order on functions from tags to their values
orderedk-tuple of the itemsy;, n,, ..., n,
the set of all which have property.
{f(n): there exist positive constarntsandn, such that
0< f(n) <cg(n) foralln>ny}
Regular expression such tHaE, |E,) = L(E;) UL(E,).
Regular expression such tHate*) = L(E)*.
Regular expression matching any single symbol in the used
alphabet.

abstract syntax tree

deterministic finite automaton

deterministic finite automaton with semantic actions
nondeterministic finite automaton

nondeterministic finite automaton with semantic actions
deterministic finite automaton with tagged transitions
nondeterministic finite automaton with tagged transitions
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Chapter 1

Introduction

Pattern matching, despite its low-key coverage, is a very important topic in computer
science. It occurs naturally in many areas of science and information processing, such as
data processing, lexical analysis, text editing, and information retrieval. Indeed, pattern
matching is the main programming paradigm in several programming languages like
Prolog, SNOBOL4, and Icon, and most programming languages provide some kind of
primitives to perform different kinds of pattern matching on strings. In biology, string
pattern matching problems arise in the analysis of nucleic acids and protein sequences.
Considering all this, it is not a surprise that string pattern matching is one of the most
widely studied problems in theoretical computer science.

This thesis concentrates on regular expression patterns. Regular expreggjons [
are very popular for describing patterns for searching text, and there are numerous tools
and libraries which implement regular expression pattern matching, like3&xahd
flex [47]. Most programming languages, such as Pef],[provide some form of regular
expression pattern matching. Regular expressions and regular expression matching have
recently been used even for implementing type systems for programming languages
[20, 21].

It is not always enough just to perform language recognition, that is, to find out
whether patterns of interest occur in the text. Frequently we need to know exactly where
a substring matching the pattern was found and extract parts of a successful match. For
example, if a pattern matches an address, it should be easy for the programmer to access
the zip code. In the extreme case, a full parse tree of the match is required. The problem
of extracting partial parse information of a match is called submatch addressing and is
the main focus of this thesis.

Often the searched text is very large, emphasizing the need for efficient algorithms.
For example, an algorithm using time in the or@n?) or worse is unacceptable when
searching for a pattern from several megabytes of data. Space consumption should also
be as low as possible, so that no more space is used than necessary. In general a full
parse tree of a stringg matching a regular expressiottakesO(|w|) space, but in most
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cases a full tree is not required, and even the full parse tree often take3(@lyspace.
Searching for a simple patterrfrom a very large text is best done using an algorithm
which uses space depending onlyrgmot the length of the text being searched.

There has been some work in the area of efficient algorithms for regular expression
pattern matching with full or partial parse extraction. The algorithms in widespread
use at the time of this writing either take exponential worst-case time to find a match,
useO(|w|) space, or can handle only a subset of all regular expressions. None of these
features are desirable for a general-purpose implementation, sSUCR@SI4.2 [23]
compatible regular expression matching library.

This thesis mostly concentrates on on-line algorithms, where preprocessing of the
pattern must not take long, and the searched text cannot be indexed before the search.

This thesis has the following structure:

In Chapter2 regular expressions and the submatch addressing problem are defined.
After these a brief survey of previous work on submatch addressing and regular expres-
sion parsing is given, and the most important problems of the previous techniques are
shown.

In Chapter3 | first present nondeterministic automata which may have transitions
augmented with tags, give a formal definition of their semantics, and show how to solve
the submatch addressing problem using nondeterministic tagged automata. Then | dis-
cuss efficient techniques to simulate these automata, and show how they can be con-
verted to corresponding deterministic automata. Finally, a more generic model is dis-
cussed where transitions are augmented with computable functions which manipulate
some arbitrary data, and full parsing and approximate regular expression matching are
discussed.

In Chapter4 an actual implementation of some of the algorithms studied in the
previous chapter is discussed.

In Chapter5 some experimental test results using the implementation described in
Chapterd are shown, and comparison to other implementations is done.

In Chapter6 some directions to future work and research are given.

In Chapter7 the conclusions gained in this thesis are summarized.



Chapter 2

Submatch Addressing for Regular
Expression Matching

Regular expressions, regular sets (sometimes called rational expressions and rational
sets, respectively), and finite automata are central concepts in automata and formal lan-
guage theory. A regular set is a set of strings matched by a regular expression. The
origins of regular sets go back to the work of McCulloch and PR& fvho devised
finite-state automata as a model for the behavior of neural networks.

The notation of regular expressions arises naturally from the mathematical result
of Kleene R§] that characterizes the regular sets as the smallest class of sets of strings
which contains all finite sets of strings and which is closed under the operations of
union, concatenation and Kleene closure.

This chapter first defines the syntax and semantics of regular expressions. Then the
submatch addressing problem is defined and some solutions by others are discussed,
showing the biggest problems of these previous solutions.

2.1 Regular Expressions

Definition 2.1 Regular expressiorsver an alphabeX are defined as follows:

1. € and each member &fis a regular expression.
2. If ry andr, are regular expressions then sgrigr,).
3. If ry andr, are regular expressions then sdrig,).

4. If r is a regular expression then sais

Nothing is a regular expression unless it follows from a finite number of applications
of the rules above. The above defines only the regular expression syntax. The meaning

3
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of a regular expression, that is, the language represented by a regular expression, is
defined using a functioh, which is defined recursively as follows:

1. L(e) = {e} and for each symbdal in the alphabeL(a) = {a}.
2. If ry andr, are regular expressions the((r,|r,)) = L(r;) UL(r,).
3. If ry andr, are regular expressions the((r,r,)) = L(r;) oL(r,).

4. If r is aregular expression thérr*) = L(r)*. O

The concatenation of two languadeso L, is defined as
Lyol, ={w: w=xyforsomexe L, andyc L,}

L*, the Kleene closure of a langualggs the set of all strings obtained by concatenating
zero or more strings frorh.

Many parentheses in regular expressions can be avoided by adopting the conven-
tion that the Kleene closure operatohas the highest precedence, then concatenation,
then| (alternation). The two binary operators, concatenation and alternation, are left-
associative. Under these conventions the regular expregsidas(c*))d)) andalbc*d
are equivalent, in the sense that they match the same strings, namalyoraab fol-
lowed by a sequence of zero or mare followed by ad.

Example 2.1 For example, the regular expression
(hotlcold) (applgblueberrycherry) (piejtart)

matches any of the twelve delicacies ranging fiomh apple pigo cold cherry tart

The regular expression
the (very,)*very hot cherry pie

matches the stringbie very hot cherry piethe very, very hot cherry pig¢he very, very,
very hot cherry pieand so on.

The regular expression
(c*(al(bc))*)

represents the set of all strings oet b, c} that do not have the substriag. a

There are many popular programs, tools, and libraries for performing regular ex-
pression matching. Most of these programs implement some extensions to the regular
expression notation, likawk[3], lex[32], andflex[47]. Extensions are usually imple-
mented in order to provide more succinct and understandable ways to represent regular
languages. In fact, the relative succinctness of different notations for regular sets has
been of considerable theoretical interd$, [37].
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In the regular expression notation defined above the sympadls|, and* are
metacharacters that are not a part of the alphabet. In computer implementations we
do not have the luxury of using extra characters out of the alphabet for the regular ex-
pression notation, and a way to match the regular expression metacharacters themselves
is needed. This is usually achieved by using backslashs a quoting metacharacter
that permits metacharacters to be matched. The metacharacters can be denoted by pre-
fixing them with the backslash;), \(, \|, and\* match), (, |, and* respectively. The
backslash itself is matched hy.

Often we need to specify sets of input symbols in regular expressions, and using
expressions of the fornfa,|a,|as|...) can be cumbersome. Many implementations
support denoting sets of characters by surrounding them with brackets. For exam-
ple, [abc] is equivalent to(a|b|c). Character sets can be negated using a caret, so
that [~abcl matches any character excepth, or c. Character sets which consist of
consecutive characters can be defined using special character range notation. For ex-
ample,[a— Z] matches any lower case character, &nd— zA— Z0— 9] matches any
non-alphanumeric character. The character range notation is naturally dependent on the
order in which the characters are represented internally in the implementation (typically
ASCII [6] or a derivative).

Further shorthands can be defined for the most often used sets of characters, the
most popular of these beingvhich matches any single character. The expressiam
be thought of as a “don’t-care” or “wildcard” symbol. Another common notation is the
* operator. Ifr is a regular expression, thén) ™ denotes the same language @g*.

None of these extensions add more descriptive power to the expressions, in the
sense that the languages which can be denoted by the extended expressions are still
purely regular, and only regular sets can be described with these extended expressions.

One popular extension which does extend the class of representable languages is
back referencing Regular expressions with back referencingrewbrs appeared in
the first version of the SNOBOL programming languadé][ and have since found
their way into for example the UNIX commangtep and the Perl$4] programming
language.

Rewbrs have an assignment operator %, so that if for exarripla regular expres-
sion, then the rewln%v,, matches whatevermatches and assigns the matched string to
the variablev,. After this, the variable can be used to match that same string again. For
example, the rewbfalb)*%v,v, denotes the languadev: w = xxandx € {a,b}*}.
Repeated strings like this are callequaresor tandem repeatsAs another example,
the rewbr(albjc)*((alb|c)%v,)(alblc)*v,y(albjc)* matches any string d's, b's or c's
with at least one repeated character.

Surprisingly, not much theoretical study of back referencing has been done. A re-
lated but restricted class of expressions has been studied by AngJuiipgluin’s
expressions do not have the alternation operator and only one back reference is allowed.
Also Larsen B0] has studied regular expressions with back referencing and showed that
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the power of the expressions increase with the number of nested levels that are allowed.

Aho has also studied rewbrs, and showed that given a pattern consisting of a rewbr
and an input string the problem of finding out whetharcontains a substring matched
by r is NP-complete J]. This is perhaps one of the main reasons for lack of broad
theoretical interest in rewbrs. Back referencing constructs shall not be discussed any
further in this thesis.

2.2 Submatch Addressing

The extension discussed in this sectisubmatch addressingometimes calledub-

string addressing of matchesubstring extractionparse extractionor just parsing
regular expressions, is a very useful feature implemented in many regular expression
matching programs. For example, all IEEFOSIX standard 23] compatible regexp
matching libraries, and the Pef4] and SNOBOL [L6] programming languages sup-

port submatch addressing.

Instead of being an extension to the regular expression notation, submatch address-
ing is an extension to the amount of detail given about a successful match. Not only
the information of whether a match was found is given, but the substrings matching the
pattern and given subpatterns are reported. In short, submatch addressing means finding
the position and extent of the substring matched by a given subexpression.

For example, the regular expressieery (.*) stick matches the strindack has a
very long blue stick in his handTo be precise, the regular expression matches the
substringvery long blue stick The parenthesized subexpression matches the substring
long blug and it is asubmatchof the whole match. Submatches can be reported as
pairs of integergs,e), wheres is the position of the first character of the submatch
and e is the position of the last character of the submatch plus one. The length of
the submatch in characters can then be computeel-bg. In the above example, the
submatch addressing information for the parenthesized subexpressi25), and
the length of the submatch is 9.

To mark subexpressions for which submatch addressing needs to be done we define
a new notation; the wanted subexpression is surrounded with bra@eg] }. The
regular expression in the above example can then be rewritten using this notation as
very{.*} stick

2.2.1 Resolving Ambiguity

It is often the case that when matching a regular expression, a subexpression of the
pattern can participate in the match of several different substrings of the input string.
It is also possible that a subexpression does not match any substring even though the
pattern as a whole does match.
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Table 2.1: Leftmost-longest matches{ef*}{a*} andaaa

first subexpressio¢ second subexpression

(0,0) (0,3)
(0,1) (1,3)
(0,2) (2,3)
(0,3) (3,3)

For example, consider the regular expresdiat}{a*} and stringaaa There are
twenty possible submatch addressings in all, any of which are correct. One possibility
is (0, 0) for the first subexpression ar@, 3) for the second. Another possibility (&, 2)
and(2,3), and so on.

The following rules are used to determine which substrings are chosen:

e Leftmost-longest rule In the event that a regular expression could match more
than one substring of the input string, the match starting earliest in the string is
chosen. If the regular expression may match more than one substring at that point,
the longest substring is chosen.

e Subexpression rule Subexpressions also match the longest possible substrings,
subject to the constraint that the leftmost-longest rule must not be violated. Subex-
pressions starting earlier in the regular expression take priority over ones starting
later. Note that higher-level subexpressions thus take priority over their lower-
level component subexpressions. Matching an empty string is considered longer
than no match at all.

e Repeated matching rule If a subexpression matches more than one substring
of the whole match, the last such substring is chosen. Note that the candidate
substrings cannot overlap.

The rules are in order of decreasing priority. The subexpression rule is applied to
each subexpression in order, regardless of which subexpressions are marked for sub-
match addressing.

Example 2.2 The submatch rule tells us to choose the addressing on the Let us match
the regular expressiofa*}{a*} and stringaaa The leftmost-longest rule requires that
the whole string is matched. This restriction cuts down the number of possible substring
addressings to the four leftmost-longest matches shown in Zable

The submatch rule tells us to choose the addressing on the last row, because it has the
longest match for the first subexpression. g

Example 2.3 As another example, consider the regular expregsi@t)*. The syntax
tree for this expression is shown in Figird. Each subtree is numbered with a number
from 1 to 5.
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x 1

|
| 2
a{ \* 4
s
Figure 2.1: Syntax tree fdiaja*)*

Table2.2 shows the submatches for each subtree for some input strings. Matching
the empty string demonstrates the rule that an empty match is considered longer than no
match at all; subtree number 4 can match the empty string and therefore it must match
the empty string, although this would not be necessary to make the whole expression
match.

Table 2.2: Submatch addressings faja*)* against some strings

string| 1 | 2 | 3 \ 4 | 5

€ 0,00 | (0,0) | (—1,-1) | (0,0) | (-1,-1)
ba | (0,0)| (0,0 | (-1,—1) | (0,0) | (=1,—1)
a 0,1 | (0,1 | (0,1) | (-1,-1) | (~1,-1)
aa | (02|02 |(-1,-1 | 02 | (12
aaa | (0,3)](0,3) | (-1,-1) | (0,3) | (2,3)

The second row on the table demonstrates the leftmost-longest rule. It would be pos-
sible to match the longer substring starting from the second character, but the leftmost,
and in this case shorter, match is chosen.

The third row shows that subexpressions starting earlier take priority over ones start-
ing later. In terms of a regular expression syntax tree, a depth first preorder traversal of
the tree enumerates the subexpressions in order of priority. The subtrees inFigure
are numbered like this. Here, subtree number 3 takes priority over subtree number 4, so
the one character is matched by subtree 3 instead of 4.

The fourth and fifth row demonstrate how higher-level subexpressions take priority
over their lower-level component subexpressions. It would be possible to make the
match by letting subtree 3 match the ta/e by making two iterations with the topmost
star operator. But since subtree 2 takes priority over its components, we must choose
the match which has the longest submatch for subtree 2. d

The ambiguity resolving scheme described here is, of course, only one of numerous
alternatives. The approach used here has almost identical semantics to the one used
in [23]. Naturally, these rules are not good for every situation; in fact, the generally
accepted leftmost-longest rule has been the subject of some crititi§mThe main
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argument is that searching for longest matching substrings usually results in more com-
plicated patterns when searching structured text, such as XML [

2.3 Previous Work

The rest of this chapter describes briefly some solutions to the submatch addressing
problem developed by others. Each subsection describes a different solution.

2.3.1 Backtracking Matchers

Most regular expression matching software which support substring addressing do not
use the textbook NFA or DFA methods for matching regular expressions, but an inter-
pretive backtracking algorithm and a stack of backtracking points.

There are two major advantages of the backtracking method — it is easy to imple-
ment and it allows extensions like submatch addressing and back referehcing(
to be incorporated easily.

There is some amount of history in the evolution of backtracking algorithms which
can still be seen in the versions used today. The original backtracking algorithms sup-
ported only a subset of the regular expression syntax, the alternation ogevagnot
supported at all. This made it possible to implement a backtracking algorithm which
finds the longest match without extra backtracking.

When| is added, it becomes possible to cheat the backtracking algorithm into mak-
ing a poor choice early on that produces a less-than-longest match in the end. Many
of the implementors did not notice this; their documentation still claims longest match,
even though they do not always find it. In order to find the longest match, the algorithm
will have to explore every possible match, and this can be spectacularly expensive even
for relatively simple expressions. For example, the GNU regex-0.12 library consumes
exponential time when matching the regular expresgiy*|b* with input of the form
aaaaaaa...b With an input of only approximately 25 characters the matching takes
tens of seconds on a current workstation.

On the other hand, Perbfl] takes the easy way out; it does not even try to return
the longest match. This can be very confusing. As an example, take the Perl regular
expressiongalab) (bc)? and (abla) (bc)?, and the stringab andabc. The Perl
program

"ab" =" /(alab)(bc)?/; print($&, "\n");
"abc" =~ /(alab) (bc)?/; print($&, "\n");
"ab" =" /(abla)(bc)?/; print($&, "\n");
"abc" =~ /(abla) (bc)?/; print($&, "\n");

outputs the following:
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a
abc
ab
ab

Each line in the program matches the string on the left-hand side ef tbperator
against the regular expression betweenflebaracters. The matching substring is then
printed.

Even though it would be possible for each line in the program to match the whole
string, it does not always happen. Namely, the first and last lines of the program do not
find the longest match. This is confusing for a programmer who does not know how
the Perl regular expression matcher works, and may even be misinterpreted as a bug.
There are also cases which take a very long time to run, even though Perl tries to limit
the amount of backtracking by not guaranteeing longest matches. For example, this
program

"aaaaaaaaaaaaaaaaaaaaaaaaab" =~ /((ax*)*b)*b/;

takes tens of seconds to run (using Perl version 5.005_03) on current desktop hardware.
This too may be misinterpreted as an “infinite loop” bug.

The Perl regexp matcher is notoriously complex and contains a number of different
tricks and optimizations to avoid situations like the above where matching takes expo-
nential time. Still, no number of tricks will cover every possible situation, and there
is a limit to the number of optimizations which can be applied until the program code
becomes unmaintainable.

2.3.2 Nakata-Sassa Semantic Rules

Nakata and Sassa have proposegllar expressions with semantic rulgt3], which

can be used as tools for expressing the syntax and semantics of input data, and a method
of generating programs for processing these input data. Their regular expressions can
have intermixed semantic statements, which can conceivably be extended to implement
submatch addressing instead of using backtracking algorithms described above.

For example, in the regular expression

(a[B)y

we can insert the semantic rulésandg by writing

([F](elB)Id)Y

The rulesf andg can be implemented to store the current position in the input string to,
say, the variablet andt, respectively. After a successful match,t,) would then be
the submatch addressing data for the parenthesized subexpression.
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Figure 2.2: NFAS and DFAS fara|[f (a)])*alg(a)|b

The basic idea in the implementation of Nakata-Sassa semantic rules is that a pro-
cessing program for an expression with semantic rules can be expressed as a finite au-
tomaton for the underlying regular expression with semantic actions attached to the
proper transitions. These automata are cafleddeterministic finite automata with se-
mantic actiongNFAS anddeterministic finite automata with semantic acti¢psAS).

Nakata and Sassa do not discuss efficient methods for simulating nondeterministic
automata with semantic action transitions, but give an algorithm for translation from
nondeterministic finite automata with semantic actions to corresponding deterministic
automata. Their algorithm, however, fails to produce correct deterministic automata for
classes of important nondeterministic automata, as we shall soon see.

In the Nakata-Sassa system, each state of the nondeterministic automaton to convert
is assigned a temporary variable which is used to postpone execution of semantic actions
in cases where look-ahead is necessary. This is the weak spot of the method, and makes
it impossible to use it to implement for exampleP®SIX.2 [23] conformant regular
expression matching library.

For example, the expressida[f(a)])*alg(a)]b works correctly (see Figurg.2),
whereagqa|f (a)])*alg(a)]ab cannot be implemented (see Figi€), becaus®’ — a,
is to be executed at the transition fra@y to Q,, while f(V) for V «— a, has not yet
been evaluated. Nakata and Sassa note that the previous case could be implemented by
increasing the number of variables from one to two (by changing the assignments into
V, < a; andV, « a,, and changing & (V); f(V)) in Qg to 2(f(V,); f(V,))).

However, they fail to point out that this does not help in the general case, because
if there is some finite number of variables per state, the automaton generated from a
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Figure 2.3: NFAS and partial DFAS fda|f (a)])*alg(a)|ab

regular expression of the form
n+1

(alf(a))*a .2

does not work, because+ 1 variables would be needed per state to implement a
matcher using the Nakata-Sassa method. All the algorithms given in their geder [

also assume just one variable per state, and increasing the number of variables per state
is only briefly mentioned. Also, Nakata and Sassa do not discuss resolving ambiguity
at all; there are many important cases where submatch addressing and semantic actions
can be done in different ways (see Sectiop.]).

2.3.3 Kearns’s Parse Extraction

In his paper 25], Kearns describes a method for extracting a parse after matching with
a finite automaton. First he shows algorithms to find matches of regular expressions
patterns in strings.

One by-product of the matching process described is a sequence ofpfaes. . ., Qn,
such thaQ, is the initial state an@; is an accepting state. The whole sequence of states
is written Q and theith state a€),. EachQ; is actually a set of places in the parse tree
for the regular expression patteprbeing searched for.

Kearns gives a recursive algorithm which operates on the sequence oftatels
can be used to build a full parse tree of the match. He shows that the algorithm is
optimal in space and time. The algorithm to build the parse tree is indeed optimal in
this regard, but the sequen@eneedsO(|w|q) space to store for an input stringand
pattern of sizeg. The sequenc® is not needed for anything else but parse extraction,
so the actual space complexity of Kearns'’s algorithm is, in fact, not optimal for cases
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Figure 2.4: NFA fora* (e|b)

where the parse tree or partial parse tree takes lesstjafg) space to store.

As an example we simulate the NFA in Figuzel, which represents the pattern
a*(elb), on the inpubaah The following sequenc®; ... Q; is calculated:

Q = {0} Ibaab
Q = {d} blaab
Q; = {0y,0;.0,,05,04.05} balab

Qs = {9y 0,0,03,04,05} baalb
QS = {q07q57q6} baab!

The exclamation mark is used to show the current position in the input string. To
the left of the exclamation mark is the already processed input, and to the right is the
unprocessed part.

Since the end statg; is in Q;, Q, andQg, but not inQ; or Q,, we conclude that the
empty string and thb at the start of the input do not match our pattern, but some suffix
of the stringsba, baa, andbaabdoes. Now, using a rather simple recursive algorithm
on the sequence of stat®sa full parse tree of any of these matches can be built.

Kearns's algorithms are used for example in the TL&% P6] code generator.
2.3.4 Others
Dubé-Feeley Parse Tree Automata
Dubé and Feeley proposed an algorithm for regular expression parsing in their paper

[13]. Their algorithm use®(|r||w|) space for patterm and stringw, like Kearns’s
algorithm.
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Combinatorial Approaches

Myers et al 0] showed an algorithm for parsing regular expressions which takes
O(c4“PN) time and space, whereis the number of tagged subexpressions (subex-
pressions for which submatch addressing is wanteid)the number of properly nested
subexpressions in the pattemis the size of the regular expression pattern, ldrslthe

length of the input string. They note that it would be possible to modify their algorithm
to get anO(cMzPN+ Tg) time and space algorithm, whe, and Ty are factors which
depend on the pattern searched. In the worst ddgeand T, still grow exponentially

with P. In any case the space complexity is dependent of the length of the string and
therefore the algorithm is not suitable for partial parsing needed in submatch addressing.



Chapter 3

Automata with Augmented
Transitions

In this chapter | propose a new method for solving the submatch addressing problem ef-
ficiently. A new model of computation created by augmenting transitions of traditional
finite automata to manipulate location data is presented. The model is applied to solve
the submatch addressing problem. Algorithms to efficiently simulate the augmented
automata are given.

This chapter also discusses some problems related to submatch addressing, namely
full parsing and approximate regular expression matching. These problems can be
solved by generalizing the augmented transition model described in the next section.

3.1 Nondeterministic Automata with Tagged Transitions

To solve the submatch addressing problem (and with some generalizations a range of re-
lated problems) using automata, | propose a model where transitions can be augmented
with tags These augmented transitions are catieghjed transitions Tags are of the
formty, wherex is an integer. Each tag has a corresponding variable which can be set
and read, and when a tagged transition is used, the current position in the input string is
assigned to the corresponding variable.

/ty
O

Figure 3.1: A tagged transition

If a tag is unused, it has a special valu€l. Initially all tags are unused and have
this value. A tag and its variable are synonymous, so if we refer, say, to the vagiable
we mean the variable of tag. Figure3.1shows how tagged transitions are marked in

15
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a graph. For untagged transitions,is used to denote that there is no tag. Usually the
/@ is omitted from graphs so thaf @ is writtena ande/w is writtene.

At first glance automata with tagged transitions are reminiscent of finite-state trans-
ducers sometimes used for parsing purpo82<9, 50], but the semantics are different.
We are interested in a single path which results in a final state with a given input string,
and want to know, in addition to which tags have been encountered, the places in the
input string where they were last seen. The following definitions formalize this idea.

Definition 3.1 A nondeterministic finite automaton with tagged transitiomsTNFA
isa 7-tupleM = (K, T, <1, Z,A,s,F), where

K is a finite set oftates
T is afinite setotags w € T,

< is a total order on items of. V is the set of all functions frort — {w} to
NuU{—1}. Members ol are calledag value functions

> is analphabet i.e. a finite set of symbols,
A is thetransition relation a finite subset oK x 2* x T x K.
s e K is theinitial state and

F C K is the set ofinal states 0

The meaning of a quadruple, u,t, p) € Ais thatM, when in state], may consume
a stringu from the input string, set the value bto the current position in the input
string, and enter staje

Definition 3.2 A configurationof M is an element oK x >* x * x V, where the first

item is the current state, the second item is the processed part of the input string, the
third item is the unprocessed part of the input string, and the fourth item is a tag value
function giving a value for each tag. The initial tag values are specifieg) by (T —

{w}) x {—1}. Aninitial configurationis a quadruplés,&,w,v,) for some input string
W. O

Definition 3.3 The relation-,, between configurationgiglds in one stepis defined
as follows: (g, p,u,v) -, (d, p’,u,V) if and only if there arev € 2* andt € T such
thatu = wu and(q,w,t,q’) € A. Thenp’ = pwand

[ |p] ift#wandx=t
V(Y _{ v(x) otherwise.

We define-y, to be the reflexive, transitive closuretgf;. A stringw € Z* isacceptedy
M if and only if there is a statg € F and a functiorv such thats, £,w, v;) Fy (0, W, €, V).
O
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Figure 3.2: An example TNFA

Example 3.1 Figure3.2 shows a simple example TNFA. The automaton is drawn as a
directed graph with certain additional information incorporated into the picture. Like
traditional finite automata, states are represented by nodes, and transitions by arrows
labeled withw/t from nodeq to g whenever(q,w,t,q) € A. The initial state is shown

by a wedge shapes, and final states are indicated by double circles. For the automaton
in Figure3.2M = (K, T,<,Z,A,s,F), where

K = {q07q17q23q3}

T= {t07t1}
> ={ab}
S=0y
F={0s}

andA is the relation tabulated below. We do not care abeptfor now, and can leave
it undefined.

qgw t d
B a bh o
B a 4 G
g, b o g,
g b o g

Clearly the languagk(M) accepted by is {ab}.

From the initial configuratior(q,,e,ab,Vv,) the following sequence of move can

ensue:
<q078)ab7 V0> }_M <q1)a7 ba V1>
}_M <Q3,ab,€,V1>

1 ifx=t,

where

vy (X) =
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Thus(q,, €,ab,vy) Fy (ag,ab, €,v;) andabis accepted bi¥. It is also possible to reach
the final state in the following way:

(Gg:€,ab,vy) Fy (0y,a,b,v))
}_M <q37ab787\/1>

-1 ifx=t,

Therefore alsdq,, €,ab,V,) -y (ds,ab, €,V}). a

where

Theorem 3.1 The language accepted by any TNFA is regular.

Proof outline. The proof is by reduction from TNFA to traditional NFA without chang-
ing the matched language. A TNFA can be reduced to an NFA by replacing all tags
by —1 without changing the possible configurations reached wjthwhen tag value
functions are disregarded. Theg, becomes equivalent to the corresponding operator
defined for NFAs (see, for exampled4)]), and it is clear that the accepted language is
regular. O

As demonstrated by Exampkel, for a particular stringv and a machind/, there
may be several differemfandv which satisfy(s, e, w,Vv,) k-, (9,W, €,V). In order for the
results of the computation to be predictable and thus more practical, we must somehow
be able to determine which particular valuegi@ndv we choose as the result.

Indeed, there are cases for which computing all possible configurations reachable
from the initial configuration by consuming an input string is not even computationally
feasible. The number of different possible configurations can be exponentially large.

To choose between differegtwe can simply assign each final state a unique prior-
ity and choose the one with the highest priority. This is basically what lexical analyzers
typically do when two or more patterns match the same lexeme. For exdmp]82]
chooses the pattern specified earliest in the pattern list whenever several patterns match
the same string. We can also leave the decision to the user of the automaton and make
the automaton return a set of possible pags/) whereq is a final state and is the
corresponding tag value function.

When choosing between differen{(tag value ambiguity), the situation is similar;
we need some kind of ordering for tag values also. This is whgr€omes in. It is
used as a way to prioritize different tag value configurations over others.

Definition 3.4 We define another binary relatiér, on configurations yields tag-wise
unambiguously in one stgp(q, p,u,v) £, (d, p/,u,V) if and only if for any configu-
rationo for which (s, €, pu,vy) Eyy @ anda -y (o, p/,U,V’) it holds that eithex’ =V’
orv <1 V.

As before =y, is the reflexive, transitive closure bf,. A stringw € >* is tag-wise
unambiguously acceptdry M if and only if there is a statq € F and a functiorv such
that(s,e,w,vy) Fyy (0, W, €,V). O
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Note that the definitions df,, andFy, are mutually recursive. It is still possible to
compute=y, effectively, using an iterative process, for any automaton and input string.
Examining the definition a little further reveals that the initial configuration can be used
as the starting point of the computation. This is because the initial configuatien
the only configuration in the beginning for which we know thaty, c,. Proceeding in
a breadth-first manner always choosing at most one path reaching any state is a fairly
efficient strategy in computingy,. Algorithms 3.4 and3.5later in this chapter show a
way to compute=y, efficiently.

Example 3.2 For the automaton of the previous example (see Figueand stringab,
the initial configuration igq, €, ab, v,). Due to reflexivity,(q,, €, ab, vy) Fy (0o, €,ab,vp).
Becaus€q,, £,ab,v,) Fy (a;,a,b,v;) and(qy, €,ab,vy) - (d,,a,b,V;) (see the previ-
ous example), we have also

<q0a e,ab, VO> ':M <q17aa b7V1>

and
<q05 evabv V0> ':M <q2aa-a bv\/1>

We do not need to choose the “winners” for stajganda,, since there is only one path
from the initial configuration to each of these states.

Note that if o ), B then alsox =y B. The previous example shows also that
<q1aaa b7V1> I_M <C]3,€,ab,V1> and <q27aa b7VO> }_M <q3787abv\/1>' Now we need to use
<1 to choose one to be the tag-wise unambiguous step which reaches,;statg <
vy, then

<q17 a, b7 V1> ':M <q3, ab, £, Vl>
and
(0o, €,ab, V) Fy (dg,ab,€,vy)

The other possibility is that; <1 v;, then

(ap,a,b,vp) Fy (gg,ab,€,V))

and
<q07 £, a'b7 VO> t:*M <q37 aba €, \/1>

0

Theorem 3.2 For a string w and a TNFA M, if y=y (q, p,u,v) for some e K, p, u,
and ve V, then v is unique.

Proof. The proof follows trivially from Definition3.4. If v, Ef; (g, p,u,v), thenv is
the minimum tag value function, as pex, for which the otherwise same configuration
can be reached withy, from some previous configuration reacheddjy. Thereforev
must be unique, since; is a total order. O
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Theorem 3.3 If a string w is accepted by M, itis also tag-wise unambiguously accepted
by M.

Proof outline. As can be seen from the definition bf,, a configurationc’ can be
reached from another configuratiornf ct-,, ¢'. There is an additional restriction that

the tag value function i’ must be the minimal one for the state reached wijjfor the

same input string prefix. This restriction does not prevent any state from being reached
with F, if it is reached withi-,, it only cuts down the number of possible tag value
functions to exactly one. The conclusion is that if a state is reachable-yyitft is also
reachable withF,,, and the theorem follows. O

The point of=y, is that it can be used to efficiently compute the minimum tag value
functions of final configurations reachable with an automaton for an input string. How-
ever, depending on the properties of the automatgndoes not always find the correct
minimum tag value function that would be found by computing all possible final con-
figurations with-y, and finding from these the minimum tag value function.

Let us explore in more detail what properties of the automatongnare necessary
for -y, andkFy, to give the same answer when searching for the minimum tag value
function.

Definition 3.5 (consistency)Let W be the set of strings which are tag-wise unambigu-
ously accepted by an automateh That is, for every stringv € W

(S.&,W,Vp) Fy (0, W, €,V)

for someq € F andv € V. ThenM is consistentf for everyq € F andv € V for which
(s,€,W, V) Fa (0, W, €,V)

we have that iff = qthenv<; Vv orv=V. O

In other words, an automaton is consistemtjf yields the same tag value functions
in the final states as the minimum tag value functions computedhgjth

It is not immediately obvious that any usable class of consistent nontrivial TNFAs
exist. But, as itturns out, there is a class of consistent TNFAs which can be used to solve
the submatch addressing problem, which is quite enough for most practical applications.

Letv, andv, be two tag value functions such that<; v,. Letposbe some integer
such thatpos> v (tx) andpos> v, (ty) for anyty € T andty € T. Also lett, € T be

some tag and
_J pos ift=t
Valt) = { V,(t) otherwise.

_J pos ift=t
\/b(t)_{ v, (t) otherwise.
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The above is a formal description of a situation where the tag value fungtioims
another tag value functiow. A change to the functions later, by changing the value
of some tag, to the current position given lgyos would yield the modified tag value
functionsv, andyv;. If we want to find the globally minimal tag value function, it must
then hold that/, <, v, or v, = .. For if it were thatv, <, Vv,, thenv, would certainly
not be the minimum value. Bity, would have already chosem earlier, and/, would
never even be computed.

So to summarize, in a consistent automathnf =, chooses some tag value func-
tion v, over another tag value function, then it must be certain that no later tag en-
countered would yield a situation whevg should in fact have been chosen instead of
Va.

From now on we will restrict ourselves teo; of the following form. Letv, € V and
Vv, €V be some tag value functions. Then<y v, if and only if

JdeT: (tx € minimizedand (Va(tx) < v, (tx)
andvty € T, 0 <y < X: Va(ty) = vy(ty)))

or (tx ¢ minimizedand (va(tx) > Vv, (tx)
andvty € T, 0 <y < X: Va(ty) = vy(ty)))

(3.1)

Hereminimizedis a set which contains the tags whose values we want to minimize.
The values of tags which are notimnimizedare maximized.

Another restriction is put on tags, we will allow each tag occur at exactly one tran-
sition. The TNFA definition would allow for multiple occurrences of the same tag,
although it is not immediately clear whether this could be useful.

Now we are ready to analyze when—< v, if and only if v, <; v, orv; =v. In
equation3.1there is always some minimurfor whichva(tx) andv,(tx) differ, and for
all y less tharx the valuesva(ty) andv(ty) are the same. If we define new tag value
functionsv, andv, like above by changing the value of some tagthere are three
cases. The first two cases are trivial, the third is less so.

o If k< xthenv, <; v, becauser,(t,) = v, (t,) andva(t,) = v, (t,).

o If k> xthenv, < v, because s the minimum number for whicW,(ty) # v, (tx),
andvy(ty) = Va(tx) andvy(tx) = vy (tx).

¢ If k=xthen the situation is a bit more complicated. Each tag occurs exactly once
in the automaton, ant} has already been encountered at least once, because it
has different values im, andv,,. If k = x happens, then the same tag is encoun-
tered again. Then there must be a cycle in the automaton contajniBgt now
V,(t,) = Vv, (t,) = pos and it seems to be difficult to make any assumptions on the
values of the rest of the tags r > k, which determine whethef, <+ v,

Figure3.3illustrates this situation. The arbitrary pdthalong with the transition
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P,

£/ty P, @

Figure 3.3: lllustration to analyze TNFA consistenBy.andP, are arbitrary paths.

labelede /ty constitutes a cycleR, is a path from the target state of thhéransition
to a final state. There may be several differénin a TNFA.

Because it seems difficult to reason anything clever abouttaggh thatr > k,
we will resort to an easy way out. We look for situations such that the values of
tr, r > k do not actually matter. There are at least three relatively simple cases:

— All t;, r > k occur in allP,. Then whatever values eathhave would be
overwritten to the same values by, andv, = v,.

— All t;, r > k occur in allP,. Then it does not matter whethe} < \/b,
V, =V, Or'Vy, <1 V,, because the tags which decide this will be overwritten
anyway by the time a final state is reached.

— For any path from the initial state to any of the stated®ono tagt,, r > k
must occur. In this casé, = vj,, because all tags, r > k are unused.

Now we have learned some simple restrictions which guarantee the consistency of
a TNFA which meets these restrictions. The next section shows how to construct a
consistent TNFA for any submatch addressing problem.

3.1.1 Solving the Submatch Addressing Problem Using Tags

Automata with tagged transitions provide an elegant solution to the submatch address-
ing problem. It is well known that as a formalism for specifying strings, regular ex-
pressions and finite automata are equivalent in that they both describe the same sets
of strings B4, 48, 51]. There are many ways to transform regular expressions into
nondeterministic finite automata which recognize the language defined by the regular
expression. Perhaps the most well-known method is Thompson'’s construsjtemd|

similar inductive methods3g, 51].

Regular expressions with tagse similar to normal regular expressions (see Section
2.1) with one addition; one may write tags of the fotpstraight into the regular expres-
sions. A tag matches the empty string and has the side-effect that the current position in
the input string is assigned to the tag’s variable.

TNFAs can be constructed for regular expressions with tags by modifying Thomp-
son’s constructiong] to handle tags.
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Definition 3.6 (Modified Thompson’s construction) A regular expressiolt over an
alphabefT is transformed into an nondeterministic finite automaltbfE) with input
alphabefT. For allE, M(E) has exactly one final state. The final state is distinct from
the initial state and has no transitions leaving from it. Similarly, there are no transitions
to the initial state.

To avoid redundancy in the drawings, a partial automaotE) is usually shown
instead oM (E). The difference betweew’ andM is such thaM’(ta(E)t,) = M(E). In
other words, irM(E) the first and last transition are tagged with tagandt,, respec-
tively. The tags are such thatandb are smaller than the number of any tag occurring
in M(E), anda # b. Tagt, is minimized and, is maximized, so thak; can be written
down in the form of Equatio3.1 on page21l.

The following is a list of recursive rules to construct a consistent TNFA for any
regular expression.

e M'(g)is

-(O—0

Herei is a new initial state and a new final state. Clearly, the language recog-
nized by this TNFA is{e}.

e Foracz, M'(a)is

-(O—0

Againi is a new initial state anfl a new final state. This machine recognifas.

o Fortye T, M'(ty) is

/ ty
-O—0O

This machine recognizeg }, with the side-effect that the current position in the
input string is assigned ty.

e Forthe regular expressidh |E,, construct the following composite TNRA'(E, |E,).
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Herei is a new initial state andl a new final state. There is a transition®from

i to the start states &l (E,) andM(E,). There is a transition oa from the final
states oM(E,) andM(E,) to the new final staté. The initial and final states of
M(E,) andM(E,) are not initial or final states d¥l(E,|E,). Note that any path
fromi to f must pass through eith&t(E,) or M(E,) exclusively. Thus, we see
that the composite TNFA recognize¢E;) UL(E,).

e For the regular expressidfE,, construct the composite TNRX'(E, E,):

The initial state oM (E,) becomes the initial state of the composite TNFA and

the final state oM (E,) becomes the final state of the composite TNFA. The final
state ofM(E,) is merged with the initial state d¥l(E,); that is, all transitions

from the initial state oM (E,) become transitions from the final stateM{E, ).

The new merged state loses its status as a start or accepting state in the composite
TNFA. A path fromi to f must go first througM(E,) and then througiv(E,)

and no edge enters the initial stateM{E,) or leaves the final state &f(E,),

there can be no path froiro f that travels fromM(E,) back toM(E,). Thus,

the composite TNFA recognizésE, ) o L(E,).

e For the regular expressid*, construct the composite TNRX'(E*):
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Herei is a new initial state and a new final state. In the composite TNFA, we
can go fromi to f directly, along an edge labelex representing the fact that
isin (L(E))*, or we can go from to f passing througM(E) one or more times.
Clearly, the composite TNFA recogniz@s(E))*.

e For the parenthesized regular expressien useM(E) itself as the TNFA.

e For a regular expression marked for submatch addresfig,useM(E) as the
TNFA. The tags in the first and last transitionMfE) will give the submatch for
E after a successful match.

3.1.2 Efficient Simulation

Simulating a TNFA means computifig, using some algorithm. This section discusses
algorithms to computey,, starting from a simple but inefficient version and gradually
improving the algorithm to finally get a sufficiently efficient algorithm.

As already suggested in conjunction with Definiti®d, the best way of computing

u is to follow all possible paths in parallel. Since we are interested in only one set of
tag values, it is possible to throw away paths which will result in unwanted tag values,
so that the total number of paths we consider at each instant does not grow over a
certain limit. To be precise, this pruning can be done at each state after each consumed
input symbol so that we need to remember at most as many paths as there are states in
our automaton. This idea is already incorporated into the definitidt,ofand in this
section a pseudo-code algorithm is given to efficiently calcufgjdor an automaton
and input string.

All the algorithms in this section work on a nondeterministic tagged automaton
M= (K,T,Z,A s F).

The following is an algorithm to calculate tlaeclosureof a set of states, taken from
[5]. It takes as an argument a set of TNFA stafeS K. The algorithm computes the
set of all nodes reachable frofiusing onlye-labeled edges of the TNFA. The stack
holds states whose edges have not yet been checkeddbeled transitions.
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Algorithm 3.1 (e-closure)
1 push each state @ ontostack
2 initializeresultto Q
3 while stackis not emptydo
4 popdq;, the top element, off adtack
5 for eachq, such that(q,, €,t,q,) € A for somet do
6 if g, is not inresultthen
7 addgq, to result
8 pushg, ontostack
9 endif
10 done
11 done
12 return result

This is a fairly efficient algorithm, takin®(|4|) worst-case time an®(|K|) worst-
case space when implemented reasonably. When simulating a TNFA, we also need to
calculate the set of tags encountered on the path to each reachable state. The following
algorithm calculates thiaggede-closureof a set of TNFA state® C K. The algorithm
was obtained by modifying the-closure algorithm to operate on paifg k) where
g€ Qis a state an#t C T is the set of tags seen so far.
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Algorithm 3.2 (taggede-closure)
1 for each statgin Q, push(qg, ) ontostack
2 initialize resultto the items irstack
3 while stackis not emptydo
4 pop(q,, k), the top element, off aftack
5 for eachq, andt such that(q,, €,t,q,) € Ado
6 if (g,,kU{t}) is not itresultthen
7 add(q,, kU {t}) to result
8 push(a,, kU {t}) ontostack
9 endif

10 done

11 done

12 return result

Algorithm 3.2 returns the set of all pair&, k) whereq is a state reachable from
some statep in Q using onlye-transitions and is the set of tags encountered on the
path fromp to g. There may be severad, k) with the sameg but differentk, because
there may be several different paths with different tags fitom the states Q.

Figure 3.4: Worst case for Algorithd.2

The time and space complexity of AlgorithBn2is O(|K |2/ T!). The set of all possi-
ble subsets of is 2T, so the result can contain at mdit times|2' | elements. Figure
3.4shows an example of a TNFA with which this worst case behavior occurs. From any
stateq in {q,,0,,...,0n} any state can be reached by following a path which contains
any subset of the tags i, t;,...,t, ;}. Thus tagged-closuréq) for anyq is of size
(n+1)2".

The next algorithm uses to choose exactly one set of tags for each reachable state
in an attempt to keep the space requirements reasonable. After all, we are interested only
in the minimal tag value functions.
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Algorithm 3.3 (tagged < .-minimal e-closure)
1 initializeresultto 0
2 for each item(qy,V,) in W do
3 for each item(q,t) in taggede-closurg{q,}) do

pos ifxet
4 letv(x) _{ Vo(x) otherwise
5 if result(q) is definedthen
6 if v < result(q) then
7 replaceresult(q) with v
8 endif
9 else
10 setresult(q) tov
11 endif
12 done
13 done

14 return result

In this algorithm,resultis a function fromK to V. As input the algorithm takes a
set of pairaV. Each item(q,Vv) in W consists of a TNFA statg € K and a tag value
functionv associated with that state.

The algorithm calls the (ambiguous) taggedlosure for each item i, and com-
putes the new tag value functions according to what tags have been encountered. In
resultthe winning tag values for the reached states as<zeare kept. Since calls to
taggede-closureare made, Algorithn3.3takesO(|W|C; |K|2T!) time, whereC; is the
time to perform a<; comparison.

The culprit of this algorithm is the way it gathers exponential worst-case size sets
of items and then compares their elements to find out the minimum tag value functions.
The following algorithm computes the unambiguous taggetbsure as defined by,
which is equivalent to Algorithn3.3if the automaton is consistent (see Definitidf).
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Algorithm 3.4 (F,, e-closure)
1 for each paifq,v) in W, addq to queue

2 initialize resultto W

3 for eachqgin K setcountq) to the input order of

4 while queuds not emptydo

5 remove the first iteng,, from queue

6 for eachq, andt such that(q,, €,t,q,) € Ado

pos if x=tandt+# o

! letv,(x) = { vy(X) otherwise

8 if result(q,) is definedand v, < result(q,)
or result(q,) is undefinedhen

9 setresult(q,) to v,

10 decreaseountq,) by one

11 if countq,) = 0then

12 prependy, to queue

13 setcount(d,) to the input order of),

14 else

15 appendy, to queue

16 endif

17 endif

18 done

19 done

20 return result

This algorithm handles the case in Figur€ in linear time, which is naturally a
significant improvement to Algorithrd.3. Note, however, that Algorithr.3 and this
algorithm do not solve the same problem, and therefore do not always return the same
result. Algorithm3.4 solves a different, more restricted, problem.

To be specific, this algorithm computes the reflexive transitive closurg,abver
e-transitions, while AlgorithB.3 computes the closure 6f, over e-transitions and
then uses<; to choose at most one tag value function for each state. If the automaton
is consistent (see Definitioh5) then these problems are the same; in general they are
not.

The complexity of Algorithm3.4is O(|T||A|C; log|T|). The term lodT| comes
from using a functional data structurey 44, 45| for tag value functions|T | is present
because every tag may need to be &ftandC; are present because the whole graph
may need to be travers€y times. Figure3.5shows a worst case for Algorithf4.

The following algorithm simulates a consistent TNFA= (K, T,Z,A,s,F) on an
input string. The algorithm steps through the set of possikjeonfigurations by con-
suming one input symbol at a time.
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Figure 3.5: A worst case for Algorithi®.4

Algorithm 3.5 (Simulating a TNFA)
1 initialize reachto F\,-e-closurg{(s,vy) })
2 initialize posto 0.
3 while pos< |w| do
4 fetch the next input symbalfrom w
5 initialize reachNexto 0
6 for each item(q,Vv) in reachdo
7 for each transitior{q,c, m, p) in A do
8 add(p,v) to reachNext
9 done
10  done
11  setreachNexto F\,-e-closurgreachNext
12 swapreachandreachNext
13 setposto pos+ 1
14 done
15 return {(q,v) | q€ F, (q,v) € reach}

Given a TNFA and an input string, this algorithm computes the set of pajcsVv)
such that(s, &, w,vy) Ef; (q,w,€,v). In other words, the algorithm returns all ways that
the stringw is tag-wise unambiguously accepted by the automaton (see Defifiitlon
on pagel8). If wis not accepted, the algorithm returns an empty set.

For simplicity, the algorithm assumes that oalyransitions can be tagged, and that
only e-transitions and transitions on single input symbols are allowed. Any TNFA can
be easily converted to another TNFA which follows this restriction, so generality is not
lost by imposing these restrictions.
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The formation ofeachNexbn lines 4—10 take®(A) time. Each call tasnambiguous-
taggede-closureon line 11 take<O(|T||A|C;log|T|) time, as discussed above. For
each input symbol, both of the above are done exactly once, so the time complexity
of the whole algorithm i©(T logTMC;N), whereN is the length of the input string.
Particularly, ifC; = O(T), then the algorithm take®(NMT?logT) time in the worst
case.

3.2 Deterministic Automata with Tagged Transitions

There are many ways to simulate the operations of a TNFA deterministically, and Algo-
rithm 3.5in the previous section is one. As is the case with traditional nondeterministic
and deterministic automata, computations that can be performed by an TNFA can be
precomputed to form a deterministic automaton. Naturally, all possible tag values can-
not be enumerated finitely, but fortunately this is not necessary.

As with traditional finite automata, the usual time-space trade-offs apply; converting
a TNFA into a deterministic automaton may take a lot of time, but needs to be done only
once, and the resulting automaton can be implemented to process characters faster than
the algorithm in the previous section. A deterministic automaton may need much more
space to store than a corresponding nondeterministic automaton, and time and space
can be wasted in computing transitions that are never used. Simulating a TNFA takes
less space, but is slower than with a deterministic automaton. Finally, the lazy transi-
tion evaluation approach can be used, where a deterministic automaton is constructed
transition by transition as needed, possibly keeping only a limited number of previously
calculated transitions in a cache.

3.2.1 Converting Nondeterministic Tagged Automata to Deterministic Tagged
Automata

To account for the fact that a TNFA can be in many different states after reading some
input symbols, a state in the deterministic counterpart, TDFA, is a set of items. Each
item in the set describes one possible configuration the TNFA can be in. A situation
is the combination of the current state and tag values, and can be represented by a pair
(s,t), wheresis a TNFA state antlis a value which describes the current value of all
tags.

Actually, t does not need to be an explicit description of the values, it can be just
a reference to a location (a pointer, if you will) which contains the actual description.
If we used explicit tag value descriptions as values, dfie number of different sets of
situations would be infinite. By using references instead, we gain two things. First, all
possible TDFA states can be finitely enumerated if we restrict ourselves to a finite set
of locations. Second, by swapping the contents of different memory locations we can
change a TDFA state to appear different without changing its meaning. This makes the
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TDFA matcher easier to implement.

Definition 3.7 To represent the idea of locations and references formally, we define an
addresdo be a symboé;, wherei € N, for somek. The set of all addresses is denoted
by A. We also define a functiom from A toV representingnemory HereV denotes

the set of tag value functions as in DefinitiBr2 on pagel6. O

For example, to get the tag value function storethiat addressy,, we simply look
up m(an).

Definition 3.8 To describe operations an and the tag value functions stored there,
we defineC to be the set of possibiastructions C consists of two part$;s andCe,

so thatC = CsUC.. Cs is the set of all strings of the formet(n,t) wheren € N, and

t e T —{w}. Cis the set of all strings of the forropy(a,b) wherea andb are inN,.

O

The meaning oket(n,t) is that the tag value functiom(a,) is changed so that
is mapped t@os It may be that already maps tposin which case nothing changes
whenset(n,t) is performed.

The meaning otopy(x,y) is that the value at addresg is copied to addresa,.
The copy does not interfere with the original, so that-operations om(ax) do not
changem(ay) or vice versa.

Instructions can be concatenated together to form sequences of instructions. These
sequences are bounded with brackets, and the instructions are separated by commas.
For example[copy(0,1), set(1,0)] first copies the tag value function(a,) to m(a,),
and then changes the copy so that, )(0) = pos The set of all possible instruction
sequences is denoted %

Definition 3.9 A deterministic finite automaton with tagged transitipns TDFA, is a
7-tupleM = (K,Z,0,8,m,,F,V), where

K is a finite set oktates

2 is analphabet i.e., a finite set of symbols,

0 is thetransition function a function fromK x 2 to K x %.

se K is theinitial state,

m, is a function from addressesYospecifying thenitial tag values and

F C K is the set ofinal states O

V is thefinal tag value selectgr function fromF to A.
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a a

Figure 3.6: An example TNFA

Example 3.3 The algorithm is outlined by means of an example. The example TNFA
is shown in figure3.6. The TNFA corresponds to the regular expressjafi}a*a so
that(0,t,) gives the submatch.

Now we begin to generate the TDFA, and the first step is to find the initial state.
The initial state of the TNFA ig),, and there is a taggegtransition fromg, to g;.
Following the definition of=y,, the TNFA can stay in statg, (=, is reflexive) or use
the transition labeled/t, and enter statg,. Formally,(q,, &, W, V) Fy; (dy, €, W,V,) for
anyw, wherev, = {(t;, —1)} andv; = {(t,,0) }.

From these considerations we form the initial state of the TDFA:

Qo = {(to-ay), (G,a1)}

and the initial tag value functions

My = {(ap, {{to: =) })» (a1, {{te;0)})}

TDFA states are represented as sets of pajrs,), whereq; is a TNFA state anda,

is an address such thata,) is a tag value function specifying the current tag value
function for stateg;. This particular state can be interpreted to mean that a TNFA can
be either in state|, with m(a,) as the tag value function, or in staje with m(a,) as

the tag value function.

Next, if the symbohis read, the TNFA can choose any of the following four actions:

e Move from(q,,a,) back tog,. We take a copy ofin(a,) to some location, say.

e Move from(q,,a,) back tog, and then move tg, usingt,. We again take a copy
of m(a,) to some locatiory. Since &, was encountered, we also need to modify
the copy so thatn(ay)(t,) = pos

e Move from(q,,a,) back tog,, and take a copy afh(a,) to z

e Move from(q,,a,) to g,, and take a copy afh(a,) tow.

From this we get the second state of the TDEAY,, ax), (0, ay), (0y,8z), (0, aw) }-
Note that a pair witlg; as the left item occurs twice in this set. This means that there
are two different ways we could reagh, and we must choose one. Now we will make
an assumption; we assume tHdt,, a)} <, {(t;,b)} always, ifa > b. While this is
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not true in general, we assume that it is true for thethat we are using. In this case
m(ay)(ty) > m(a;)(t,) always becausm(ay)(t,) = posandposis the largest tag value
so far. Therefore alway®(ay) <+ m(a;), and the unambiguous state @; = {(d, ax),
<Q17aY>v <q2vaW>}'

We have not yet assigned concrete valuesxfor andw. Now that we have the
whole unambiguous state in sight, we can freely choose any suitable locations for the
tag value functions. In this case, we canxet 0, y = 1, andw = 2, and the final
unambiguous state is:

Q; = {{dy, ap), (A1,8); (Up:8)}

We must add the instructions to create the proper tag value functiomgety),
m(a,), andm(a,) during the transition fronQ, to Q;. So, we add to our transition
function the entry5(Q,,a) = (Qy, [copy(1,2), copy(0,1),set(1,0)]).

Finally, we notice thaQ, containsg,, which is a final state. Thu€Q, is also
final, and we add); to F. If the input string ends with the TDFA in sta@;, then
corresponding TNFA would have to be in stgign order to produce a match. The final
tag values will then be in the tag value function associated ggtfthat is, ata,. To
reflect this, we add the entk(Q,) = a, to the final tag value selector functith

When the symboh is read while in stat&,, the TNFA can choose any of the
following four actions:

e Move from(q,,a,) back tog,. We take a copy ofin(a,) to locationx.

e Move from(q,,a,) back toq, and then move ta|; usingt,. We take a copy of
m(a,) to locationy and modify it so tham(ay)(t;) = pos

e Move from(q,,a,) back tog,, and take a copy ah(a,) to locationz.

e Move from(q,,a,) to g,, and take a copy af(a,) to locationw.

In the same way as before, we get the ambiguous $tatgay), (q;,ay), (0;,az),
(0p,aw) }. Like beforem(ay) < m(a;) always, and the unambiguous stat¢ (g, ax),
(01,8y), (0, aw) }. But this is just the same &3, if we letx=0,y=1andw= 2. Thus
we have a loop in our TDFA fro®, to Q, on readinga. The corresponding transition
function entry is6(Q,,a) = (Qy, [copy(1,2),copy(0,1),set(1,0)]).

Now the construction of the TDFA is complete. The TDFATS Z, §,s,my,F,V),
where

K ={Qp,Qy}
z={a}
s=Q,

My = {{@p, {{to: =) }), (a5, {{te;0)})}
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F= {Ql}
V={(Qpa)}

andé is the function tabulated below.

g w d c
Q a Q [copy(1,2), copy(
Q]_ a Q]_ [COpy(l,Z), COPY(Oa 1)7 set(l, 0)}

O

During the HB,SE project | implemented a TNFA to TDFA compiler prototype.
The compiler didn’t use the lazy transition evaluation approach, but always created the
full TDFA before processing input. The compiler source code, written in a prototype
functional programming language Shine][ should be available from the WWW
sometime in the future atttp://hibase.cs.hut.fi/. Pseudo-code for the conver-
sion algorithm can be found ir8]].

Because Shines is not optimized for computationally intensive tasks, but rather for
database applications, the performance of the TDFA implementation is modest. How-
ever, it did pass all tests for correctness, and shows that the algorithm outlined above is
feasible. The inner loop of the TDFA simulator is quite simple suggesting that an im-
plementation using a lower-level language, such a8 4; jvould probably be efficient.

3.3 Related Problems

The tagged transition model can be extended to a more generic model where transi-
tions are augmented with computable functions which manipulate some arbitrary data.
This makes it possible to create for example an automaton which counts the number
of times a certain transition is used. Using functional data structdfesifl, 45] this

more generic model can be simulated efficiently. The following two sections show two
good examples of the ways the tagged transition model can be extended to solve related
problems.

3.3.1 Full Parsing

The submatch addressing algorithm can be extended to store full parse data and still
retain the same time complexity. Space complexity will ris®ffw|), since an explicit
representation of a full parse tree cannot be stored in less space in the worst case.

To get full parse data, we must not discard old tag values when a tag is encountered
repeatedly, but store all the positions in the input string where tags were encountered.
This can be easily achieved by changing the new tag value function in the definition of
Fu (on pagelo6) to the following:
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V(x) = { (|p'[,v(x)) if t# wandx=t

o v(X) otherwise.

This new definition will accumulate all positions in the input string where tags were
seen into a list (lisp programmers will find this representation of lists as nested pairs
familiar) where—1 marks the end of the list. The definition af- will of course need
to be changed to compare the first values of the lists.

After this simple change a concrete parse tree can be built from the lists of tag values
easily inO(|w|) time.

3.3.2 Approximate Regular Expression Matching

The submatch addressing algorithm can be easily extended to an approximate regular
expression matching algorithm. Approximate pattern matching allows matches to be
approximate, that is, allows the matches to be close to the searched pattern under some
measure of closeness. One commonly used measaditidistancealso known as the
Levenshtein distand83], where characters can be inserted, deleted, or substituted in
the searched text in order to get an exact match. Each insertion, deletion, or substitution
adds the distance, or cost, of the match.

There has been some previous work on approximate regular expression matching.
In [38] MuZzatko presents nondeterministic automata for approximate regular expression
matching, but concludes that “simulation of a hondeterministic automaton is of a high
time complexity” without doing any concrete complexity analysis.

In [39 Myers and Miller give an algorithm to solve the problem@iMP) time,
given a string of lengtiM and a regular expression of lend®hThis is asymptotically no
worse than for the simpler problem of approximate matching of simple keywords. The
paper also gives a®(MP(M + P) + N?logN) time algorithm for arbitrary increasing
gap penalties. InZ9] Knight and Myers describe ad(MP(logM + log?P)) algorithm
for approximate regular expression matching with concave gap pendifies [

Definition 3.10 (Approximate RE match) A string w matches the regular expression
E approximately with cost if somew € L(E) can be transformed twwwith cinsertions,
deletions, or substitutions. O

Any string matches any regular expression with some cost, so a useful algorithm
is one that can be used to tell whether there is a match with a cost lower than some
threshold value, or to find the minimum cost. Some algorithms let the relative costs of
insertions, deletions and substitutions to be changed arbitrarily. These costs are denoted
by ¢, ¢4, andcs, respectively.

The approximate matching algorithm is constructed by changing the modified Thomp-
son’s construction in Sectioh1.1as follows:
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Forae Z, M(a) is

g/c+—cCcHcC
O OBERT
.JC—C+Cs
Herei is a new initial state andl a new final state. This machine recognizes:

n
o
1. {a}oZo...0o2 with the side-effect that is increased byg.
n
"
2. Zo...oX with the side-effect that is increased by, +ng,.
n

o
3. ZoZo...oZ with the side-effect that is increased bygs + ng.

Now, if we defineT, the set of tags, to contain ontyand use plain integer compari-
son as<, the TNFA simulation algorithm becomes an algorithm which finds the mini-
mum cost for which the input string matches the regular expressions. [SineeO(1),
the algorithm take©(MN) time to match a string of lengt against a regular expres-
sion of sizeM.



Chapter 4

An Implementation

This chapter describes my implementation of a regular expression matcher which ap-
plies the algorithms studied in this thesis. The aim was to create a general purpose reg-
ular expression matching library; the library should be robust and sufficiently good for
a wide variety of uses. The TNFA matcher implementation, including the C language
source code, is available as free software. It can be downloaded from the WWW at
http://www.iki.fi/v1l/libtre/. The proof-of-concept TDFA implementation dis-
cussed in SectioB.2.1should be available from the WWWattp: //hibase.cs.hut.fi
sometime at the future.

A typical use for a general purpose matcher is searching for all non-overlapping
occurrences of relatively simple patterns from a long text. For example, a search-and-
replace utility in a text editor could be implemented in this way. The matcher should not
scan more text that absolutely necessary to find the next match — if the matcher would
scan the whole text even though the first match is returned, searching for successive
occurrences of the pattern will then take quadratic time. The implementation may not
even usestrlen() or similar for finding out the length of the text.

Another typical use case is searching for texts which match a pattern from a large
number of short texts. For example, the popular UNIX utityep works this way;
each line of the input data is searched for a match and the matching lines are output.
Note that this use does not require any kind of submatch addressing.

A third typical use case is dividing a text into words or tokens which are described
using regular expressions. Traditionally this kind of processing has been done using
specialized tools, but there are situations where it makes sense to avoid using lexer
generators in favor of a library.

Most regular expression matching libraries require that the patterns must be com-
piled into some internal representation before they can be used for matching. Some
applications use a large number of regular expressions for various purposes, and com-
pile them when the application is started. If compilation takes a very long time, then

38
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the application takes a very long time to start. Therefore, compiling regular expressions
should be as fast as possible.

The POSIX standard is a widely used and accepted API for regular expression li-
braries, so it seemed natural to implemeRGS51X compatible matcher. This gives also
the benefit that are numerous other implementations to compare against.

A TNFA based implementation would be suitable fd?@SIX compatible matcher,
because of the restriction that compiling regular expressions should not take long. A
lazy TDFA generating algorithm might also be acceptable, but would be much more
complex and use a lot more memory, so | decided to go ahead with a TNFA implemen-
tation.

There are numerous methods for converting regular expressions to finite automata
[8, 9, 10, 46, 36], making an NFA matcher run faste?,[41], reducing the space re-
quirements for the transition tabled, 5, 12, 17, 52], and other useful methods and
tricks [18, 42, 53]. Most of these are probably applicable to TNFAs and TDFASs perhaps
with slight modifications.

4.1 Sacrificing Complexity

Any NFA with e-transitions can be converted to an NFA withatiransitions. In the
worst case, the modified NFA h&Xn?) transitions ifn is the number of transitions in
the original NFA. This happens for example with NFA's converted from regular expres-
sions of the form(aja .. .|a)* with Thompson’s construction. However, it is easier to
implement a fast simulation routine for an NFA withautransitions.

Functional data structuresf, 44, 45] are also hard to implement very efficiently. A
tree-like functionaD(logn) time data structure is slower than a copyd@) time rou-
tine for smalin, due to overhead from reference counting or garbage collection, memory
allocation and freeing, and other constant factors rising from the more complicated im-
plementation.

Taking the above into consideration, | decided to implement an algorithm which is
based on TNFAs withoug-transitions. | also decided to use a copyi@@n) routine
for tag value sets, since the number of tags is usually very low in practice, and modern
computers are capable of copying small memory blocks very efficiently.

The resulting algorithm is described in the next section. It @@V2T) time, but
is presumably faster than an implementation of@&IMT?logT)) time algorithm for
most practical patterns.
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4.2 Generating e-free Tagged Automata from Regular Ex-
pressions

e-free nondeterministic automata with tagged transitions can be generated from regular
expressions using a modified version of the method describég, iB¢ction 3.9. Note

that the aim here is to create arfree nondeterministic automaton, not a deterministic
automaton. Section 3.9 ob|targets for a deterministic automaton by first creating an
e-free nondeterministic automaton as an intermediate phase.

A regular expression is represented by a syntax tree with basic symbols and tags
at the leaves and operators at the interior nodes. Symbol leaves in the syntax tree for
a regular expression are labeled by symbols in the alphabet. To each alphabet leaf (a
leaf not labeled by or a tag) we attach a unique integer and refer to this integer as the
positionof the leaf.

To create are-free TNFA for a tagged regular expressiBrwe first augment it by
forming the expressiofE)#. The symbol # is not a part of the original alphabet and is
used to get a unique final state later.

The functionsullable, firstpos andlastposare calculated for each syntax tree node.
These can be formed using the inductive rules in Tableby working up the syntax
tree from the bottom; in each case the inductive rules correspond to the three operators,
alternation, concatenation, and repetition. The ruleddstposare the same as those

Table 4.1: Rules for computingullable andfirstpos

Noden nullable(n) firstpogn)
€ true 0
ty true 0
leaf at posi- ,
fal 0
tion i alse 1.0}

!
c / \C nullable(c,) or nullable(c,) firstpogc,) U firstpogc,)
1 2

if nullable(c,) then
firstpogc,) U

o addtaggfirstpogc,),
c / \c nullable(c;) and nullable(c,) emptymatcfc, ))
1 2 else
firstpogc; )
endif
*
| true firstposgc, )
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Table 4.2: Rules for computingmptymatch

Noden emptymatcn)
€ 0
tx {tx}

leaf 0
| if nullable(c,) then
emptymatcfc, )

N else
€1 € emptymatcfc,)
endif

VRN emptymatcft, ) Uemptymatcfc,)

Cy C2
if nullable(c,) then
* emptymatcfc, )
c‘: else
1 0
endif

for firstpos but withc; andc, reversed, and are not shown.
The functionemptymatclis defined in Tablel.2.

The functionaddtagstakes as arguments a set of pgipst) calledP and a set of
tagsT, wherep is a position and is a set of tags. The function returns a new set of
pairs

{{p,t)|(p,t) ePandt’'=tUT}

The first and second rules foullablestate that ih is a leaf labeled or a tagy, then
nullable(n) is true. The third rule states thatifis a leaf labeled by an alphabet symbol,
thennullable(n) is false. In this case, each leaf corresponds to a single input symbol,
and therefore cannot generateThe rest of the rules fanullable follow directly from
the algebraic properties of the corresponding operators.

As another example, the fifth rule fdirstpossays that if in an expressiars, r
generatesg, then the first positions af “show throughr and are also first positions of
rs. Any tags which will be used im when generating are added to the result. if
does not generatg then only the first positions af are the first positions afs. The
reasoning behind the remaining ruledicétposare similar.

When the functiondirstposandlastposhave been computed for each node in the
tree, we can proceed to generate the transition relétioithe e-free TNFA. Basically,
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the transition relation tells us what positions can follow a position in the syntax tree
and which tags are used to get there. The transition relation is a set of quadruples
(Ga,U,T,q,), whereT is a set of tags. The meaning of such a quadruple is that the
TNFA, when in state),, may consume the input symhbeofrom the input string, set the
values of tags ifT to the current position in the input string, and enter stgteTwo

rules define can be used to compute all transitions from an annotated syntax tree:

1. If nis a catenation node with left chilt and right childc,, and(p,t) is an item
in lastpogc, ), then for each itendp’,t') in firstpogc,), add({gp, u,tUt’,q,) to A.
Hereu is the input symbol corresponding to positiggn

2. If nis a repetition node, anfp,t) is an item inlastpogn), then for all items
(p,t') in firstpogn), add(gp,u,t Ut’,q,) to A. As beforeu is the input symbol
corresponding to positiogy.

If firstposandlastposhave been computed for each nodegan be computed by
making one depth-first traversal of the syntax tree.

The initial states and initial tag values are determined byfitlsgposof the root
node. For example, iiirstpos= {(1,{t,}),(2,{t;})}, thenq; andq, are initial states.
The initial tag values at, are O fort,; and—1 for all other tags. The initial tag values at
g, are 0O fort; and—1 for all other tags.

Example 4.1 Figure 4.1 showsfirstposandlastposfor the nodes in a syntax tree for
{(alb)*}abb#. Figure4.2 shows thee-free TNFA computed from the annotated syntax
tree.

Figure 4.1:firstposandlastposfor nodes in syntax tree fdr(ab)* }abb#.
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{toatl}

a/ty

Figure 4.2: Thee-free TNFA computed from the tree in Figufel

4.3 Eliminating Unnecessary Tags

Itis often possible to remove some tags from a syntax tree without losing any submatch
addressing information. The used submatch addressing rules (the rules which are used
to decide which one of the set of possible submatches are chosen) affect tag elimination
in subtle, but complicated ways. Therefore | will hot present an algorithm for elimi-
nating tags from an annotated syntax tree. Instead, a few examples are shown to give a
general idea of how such an algorithm might work.

*

\
/\
b /\

Figure 4.3: AST fo{a}*

*

\
a Ly

- e

Figure 4.4: Optimized AST fofa}*

Example 4.2 The regular expressiofa}* has a syntax tree shown in Figute3. This
can be changed to the one in Figdrd without losing any submatch addressing capa-
bilities. In the box beside Figure4, e signifies the position of the next symbol after the
match. If the match has zero length, then 1 < e and the submatch addressing data
computed would be invalid. This situation can be checked as a special case. O

Example 4.3 The regular expressia{b{c}|{d}*}* has a syntax tree shown in Figure
4.5. This can be changed to the one in Figdréwithout losing any submatch address-
ing capabilities. As can be seen from the figures, tagsadt; are combined inttj, and
tagst, andt; are combined int®), and lifted outside the scope of the iteration operator.
Tagt, has been left in its original position, abdhas been removed altogether. [
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a/O\*

|
T
b /\
/\

/\ \
PN PN
2 /\ l /\
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]

Figure 4.5: AST fora{b{c}|{d}*}*

a/O\*
\ by =
T .
o / >~ s =
/ \ e \t, -
/\ | ’

Figure 4.6: Optimized AST foa{b{c}|{d}*}*
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Experiments

This chapter gives some experimental results which were obtained using the implemen-
tation discussed in the previous chapter.

The performance characteristics of regular expression matchers are complex mat-
ters. Depending on the used regular expressions and the strings being searched, the per-
formance of an implementation may vary significantly. Each implementation employs
a different set of optimizations and tricks which can be applied in different situations.

In addition to performance, another important characteristic of an implementation
is correctness. Surprising as it may seem, performance and correctness are often in-
timately related. Some implementations have bugs which speed up matching in some
cases, but cause incorrect results in some other cases. Therefore it does not make sense
to compare implementations with different semantics; the semantics of the matcher have
profound influence on inherent performance problems and optimizations.

My implementation i$?OSIX compatible. There is no industry-wide agreement on a
realistic set of benchmarks f&1OSIX regexp matchers. None have even been proposed.
Therefore, it would be possible to show results which suggest that my implementation
seems to be always faster than other implementations, or results which seem to indicate
that my implementation is typically slower than others.

For these reasons, | have tried to be very careful about what conclusions to draw
from the benchmark results. The results shown in this chapter should be mostly regarded
only as demonstrations of some of the characteristics of my implementation and some
other implementations.
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5.1 Test Setup

In addition to my TNFA implementation, the same benchmarks were also done for
GNU regex-0.12 and hackerlab version 20010609. Both libraries claim t8©81X.2
compatible, and are generally regarded to be of good quality. Both libraries are written
in the C programming languag@{], and so is the TNFA matcher.

The tests consisted of timing the matching operatiegexec for different patterns
and input strings of different lengths. The time used by the regex compilation operation
regcomp for different patterns was not tested.

The tests were performed on a PC with a Celeron 300A processor (running at
450MHz, with 128 KB L2 cache and a 100 MHz front side bus), 128 MB memory,
and running Linux 2.4.4. The used C compiler was the GNU C comglet)( version
2.95.

Standard statistics techniques were used to calculate 95% confidence intervals for
the test results using the T-distribution. The deviations were negligible, so the results
presented in the next section can be considered quite accurate.

1 There are many different versions of GNU regex with the version label 0.12. | used the version
available fromftp: //ftp.gnu.org/pub/gnu/prep/regex/.
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5.2 Test Results

10
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Figure 5.1: Test results for pattefa) * and stringaaaa. ..

Figure5.1 shows the results for a very basic regular expressians, and string
aaaa.... Note the logarithmic scale on both axes. As can be seen from the figure, the
difference between hackerlab and the others is huge. Hackerlab performs very badly for
some reason. It takes over ten seconds to match a one kilobyte string with hackerlab
where the TNFA implementation scans something like 40 megabytes in the same time.

Table 5.1: Matching speeds for test 1

TNFA | GNU regex | hackerlab
3710000 cps 1190000 cpg 901 cps
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hackerlab-20010609 —=— |
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TNFA —o—

Time (seconds)
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Figure 5.2: Test results for patteta*) and stringaaaa. ..

Figure5.2 shows the results for regular expressiax), slightly different from the
regular expression in test 1 in terms of submatch addressing, and siriag .. The
slow behavior of hackerlab does not apply to this case, and it fares much better this time.
GNU regex is now the slowest implementation taking about twice as much time as the
TNFA implementation and hackerlab.

Table 5.2: Matching speeds for test 2

TNFA | GNUregex | hackerlab
3710000 cps 1850000 cps 3130000 cps
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Figure 5.3: Test results for pattefa*) * | bx and stringaaaa. ..

Figure 5.3 shows the results for patterfa*)* |b* and stringaaaa.... This test
illustrates a weakness in the backtracking algorithm used by GNU regex. Note the
logarithmic scale on both axes.

The time used by GNU regex grows exponentially with the length of the input.
At about 25 characters the matching time becomes too long in practice for any sensible
use. Both the TNFA implementation and hackerlab handle this test well, with the TNFA
implementation beating hackerlab by approximately 40%.

Table 5.3: Matching speeds for test 3

TNFA | GNU regex| hackerlab
3250000 Cpsi N/A ‘ 2330000 cps
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Figure 5.4: Test results for pattetalal...|a)* and stringaaaa. .. of length Z°,

Figure5.4 shows the results for pattefalal...|a)* and stringaaaa.... This test
shows the worst case behavior of the TNFA matcher. Note that the changing parameter
in this test is the pattern, not the input string length as in the other tests. The length of
the text in this test was constant 10 megabytes.

In the worst case, the time used by the TNFA implementation grows quadratically
with the length of the pattern (see Sectibr). Neither GNU regex or hackerlab were
able to perform this test at all. GNU regex’s backtracking algorithm runs out of stack
space almost immediately. Hackerlab on the other hand showed nonlinear growth of
matching time when the input length (not the pattern length) was rising, and took over
two minutes to match a 32 kilobyte string with the regular expreséidm) *. There
was no hope of getting results comparable with TNFA, so hackerlab was “disqualified”.

Table 5.4: Matching speeds for test 4

TNFA | GNU regex| hackerlab
N/A | noresult | no result
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Figure 5.5: Test results for pattefaobar and stringaaaa...foobar

Figure5.5shows the results for pattefeobar and stringaaaa. . .foobar. This test

demonstrates the speed of the implementations when given a simple substring searching
task.

Hackerlab performs very well. This was anticipated, as hackerlab is based on DFA
simulation and submatch addressing is not needed at all for this test. For comparison,
Figure5.5shows also the timings for the C functienrstr, from the GNU C library
version 2.1.3, which locates a substring from a string.

Table 5.5: Matching speeds for test 5

TNFA | GNUregex | hackerlab | strstr
8370000 cpsg 4180000 cpg 17900000 cpg 75600000 cps
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4.5

hackerlab-20010609 —5—
GNU regex-0.12 —&—
TNFA —o—

Time (seconds)

0 26+06 4e+06 6e+06 8e+06 1e+07 1.2e+07
String length

Figure 5.6: Test results for pattesmfoobar and stringaaaa...foobar

Figure5.6 shows the results for patte&xfoobar and stringaaaa...foobar.
This test is a variation of the previous one. All implementations scan the input
slower than in the previous test, with roughly half the speed.
Table 5.6: Matching speeds for test 6

TNFA | GNUregex | hackerlab
3580000 cps 2540000 cps 7520000 cps




CHAPTER 5. EXPERIMENTS 53

25

hackerlab-20010609 —5—
GNU regex-0.12 —&—
TNFA —o—

Time (seconds)

0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07
String length

Figure 5.7: Test results for pattefa) *foobar and stringaaaa. ..foobar

Figure5.7 shows the results for pattefa) *foobar and stringaaaa...foobar.

This is another variation of test number five. Now submatch addressing is brought
in by adding the parentheses to the pattern. The TNFA matcher handles this case almost

as fast as the previous one. Both hackerlab and GNU regex slow down to about a fifth
of their speed in the previous test.

Table 5.7: Matching speeds for test 7

TNFA | GNU regex| hackerlab
3480000 cpg 495000 cps 1620000 cps
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Figure 5.8: Test results for pattefa |b) *foobar and stringabbaba. ..foobar

Figure5.8 shows the results for pattefa | b) *foobar and stringaaaa...foobar.
This is yet another variation of test number five, with more complicated submatch ad-

dressing added by introducing the alternation operation and a string of raxisi@amd
b’s before the suffiXoobar.

The speed of the TNFA matcher drops down to about 40 percent of the speed in the

previous test. GNU regex and hackerlab perform with approximately the same speed as
in the previous test.

Table 5.8: Matching speeds for test 8

TNFA | GNU regex| hackerlab
1400000 cpg 440000 cps 1630000 cps
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5.3 Summary
Table 5.9: Matching speed summary
test number TNFA | GNU regex| hackerlab
1 3710000 cps 1190000 cp 901 cps
2 3710000 cps 1850000 cpg 3130000 cps
3 3250000 cp N/A | 2330000 cps
4 N/A no result no result
5 8370000 cps 4180000 cps 17900000 cps
6 3580000 cps 2540000 cpg 7520000 cps
7 3480000 cps 495000 cps 1620000 cps
8 1400000 cpg 440000 cps 1630000 cps

Table5.9 shows a summary of the test results. As can be seen from the table, the
TNFA implementation seems to perform rather well. While itis certain that these results
are not conclusive, and it is not even clear what a set of conclusive tests would consist
of (see the beginning of this chapter), it seems that the TNFA implementation has some
interesting qualities not present in GNU regex or hackerlab.

Perhaps the most convincing treat of the TNFA matcher is its predictability; the
matcher can perform reasonably well with any regular expression and input string.
When the input string grows longer, worst-case matching time increases always lin-
early.



Chapter 6

Future Work

Researching in more detail the nature of consistent TNFAs would be interesting. It
is easy to restrict the tag ordering function and the use of tags in a TNFA to ensure
consistency, but it would be interesting to know whether tags could be used without
restrictions if the tag ordering function is of the form in Equatih

It is also an open problem whether TNFAs can be converted to TDFAs in full gen-
erality while retaining the simplicity required for good performance. An algorithm is
outlined in this thesis for doing the conversion and a proof-of-concept TDFA implemen-
tation in [31] is referred to, but problems with following the tag ordering function are
sidestepped. A C-languag2/] implementation of a TDFA matcher would be required
to evaluate the performance gain compared to TNFAs in practice.

An implementation of the approximate regular expression matching algorithm out-
lined in Section3.3.2would be welcome. There are a few tools for approximate reg-
ular expression matching in the style gfep, and it would be interesting to see if
the TNFA-based algorithm makes a difference. It would also be sensible to finish the
POSIX matcher prototype, so it could be used as a drop-in replacement for other imple-
mentations.
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Chapter 7

Conclusion

The main objective of this thesis was to find an efficient solution to the submatch ad-
dressing problem, suitable to be used in a general purpose regular expression matching
library.

| evaluated several existing algorithms and found them problematic, either because
of exponential worst-case matching times or linear space consumption where constant
space would actually suffice. Some candidates could handle only a subset of all regular
expressions, which was not acceptable.

My proposed solution, tagged nondeterministic finite automata (TNFA), is an ex-
tension to traditional finite automata where transitions are augmented with operations
to keep track of submatch beginning and ending positions while matching. Algorithms
for efficiently simulating TNFAs with a single pass over the input string were given.

The TNFA algorithm is capable of finding submatches, decided by tags and the tag
ordering function which can be easily changed to accommodate a variety of submatch
addressing rules. The algorithm finds the solution in one linear-time pass of the in-
put string for any regular expression and input string. The space consumption during
matching is constant, depending only on the regular expression but not the input string.
In the author’s knowledge, this is a new result.

A POSIX.2 compatible TNFA matcher was implemented as a part of the thesis
work. The benchmarking results suggest that the implementation performs favorably
against some popular implementations of different algorithms solving the same prob-
lem. The TNFA matcher implementation, including the C language source code, is
available as free software. It can be downloaded from the WWWgt: //www.iki.fi/v1/1libtre/.
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