Efficient Computation of PageRank

Taher H. Haveliwala*
Stanford University
taherh@db.stanford.edu

October 18, 1999

Abstract

This paper discusses efficient techniques for computing PageRank, a ranking met-
ric for hypertext documents. We show that PageRank can be computed for very
large subgraphs of the web (up to hundreds of millions of nodes) on machines
with limited main memory. Running-time measurements on various memory
configurations are presented for PageRank computation over the 24-million-page
Stanford WebBase archive. We discuss several methods for analyzing the con-
vergence of PageRank based on the induced ordering of the pages. We present
convergence results helpful for determining the number of iterations necessary
to achieve a useful PageRank assignment, both in the absence and presence of
search queries.

1 Introduction

The dramatic growth of the world-wide web, now exceeding 800 million pages [11],
is forcing modern web search engines to look beyond simply the content of pages
in providing relevant answers to queries. Recent work in utilizing the link structure
of the web for improving the quality of search results is promising. In particular,
the Google search engine uses PageRank, an iterative algorithm that determines the
“Importance” of a web page based on the “importance” of its parent pages [5]. A
related algorithm used by the IBM HITS system maintains a hub and an authority
score for each page, in which the authority score for a page is determined by the hub
scores of its parents, and the hub score of a page is determined by the authority scores
of its children [10].

Given that centralized search engines are having trouble simply indexing the entire
web [7, 11], presenting users with search-query results relevant to them is becoming
increasingly difficult. The growth of the web will force a greater reliance on client-
side filtering and relevance analysis, and personalized searching techniques become
essential. Part of our research in personalizing link-based ranking algorithms involves
applying biases during the iterations to increase the importance of certain categories
of pages [4]. For instance, we can influence PageRank to weight pages related to
computers more heavily than pages related to cars. In this scenario, each user would

*Supported by NSF 11S-98-11904 and NSF Graduate Research Fellowship

be expected to run PageRank biased with their personalization profile on their own
personal machines, with the necessary link structure provided to them on inexpensive
media such as DVD-ROM. Reducing the running times and memory requirements of
personalized ranking algorithms is essential.

After reviewing the PageRank algorithm [4, 5] in Section 2, we discuss the various
aspects of its running time, and show that it can be computed efficiently:

e We describe an implementation, using the principle underlying the block nested-
loops-join strategy, that efficiently controls the cost per iteration even in low
memory environments (Section 3)

e We empirically show that single-precision rank values are sufficient for the com-
putation (Section 4)

e We investigate techniques for determining the number of iterations required
to yield a useful PageRank assignment. We present convergence results using
several metrics that are useful when the induced ordering on pages, rather than
the PageRank value itself, is considered. We investigate the convergence of the
globally induced ordering, as well as the ordering induced over specific search
results (Section 5)

By showing that a useful ranking can be computed for large web subgraphs in as
little as an hour, with only modest main-memory requirements, the potential for
personalization is made clear.

2 Review of PageRank

First let us review the motivation behind PageRank [5]. The essential idea is that
if page v has a link to page v, then the author of w is implicitly conferring some
importance to page v. How much importance does u confer? Let IV,, be the outdegree
of page u, and let Rank(p) represent the importance (i.e., PageRank) of page p. Then
the link (u,v) confers Rank(u)/N, units of rank to v. This simple idea leads to the
following fixpoint computation that yields the rank vector Rank* over all of the pages
on the web. If N is the number of pages, assign all pages the initial value 1/N. Let
B, represent the set of pages pointing to v. In each iteration, propagate the ranks as
follows:!
Vo Rank;1(v) = Z Rank;(u)/N,
u€ By

We continue the iterations until Rank stabilizes to within some threshold. The final
vector Rank™® contains the PageRank vector over the web. This vector is computed
only once after each crawl of the web; the values can then be used to influence the
ranking of search results [2].

The process can also be expressed as the following eigenvector calculation, pro-
viding useful insight into PageRank. Let M be the square, stochastic matrix corre-
sponding to the directed graph G of the web, assuming all nodes in G have at least

'Note that for u € By, the edge (u,v) guarantees N, > 1

one outgoing edge. If there is a link from page j to page i, then let the matrix en-
try m;; have the value 1/N;. Let all other entries have the value 0. One iteration
of the previous fixpoint computation corresponds to the matrix-vector multiplication
M x Rank. Repeatedly multiplying Rank by M yields the dominant eigenvector
Rank* of the matrix M. Because M corresponds to the stochastic transition matrix
over the graph G, PageRank can be viewed as the stationary probability distribution
over pages induced by a random walk on the web.

We can measure the convergence of the iterations using the Residual vector.
Because M is stochastic (i.e., the entries in each column sum to 1), the dominant
eigenvalue of M is 1. Thus the PageRank vector Rank*, the dominant eigenvector
of M, has eigenvalue 1, leading to the equality M x Rank® = Rank*. We can use
the deviation from this equality for some other vector as an error estimate. For some
intermediate vector Rank;, let Residual; = M X Rank;— Rank;. Equivalently, because
multiplication by M is an iteration step, we have Residual; = Rank;+1 — Rank;. We
can treat ||Residual;|| as an indicator for how well Rank; approximates Rank*. We
expect ||Residual;|| to tend to zero after an adequate number of iterations.

We now address several issues regarding the computation. We previously made
the assumption that each node in G has at least one outgoing edge. To enforce this
assumption, we can iteratively remove nodes in G that have outdegree 0. Alterna-
tively, we can conceptually add a complete set of outgoing edges to any node with
outdegree 0. Another caveat is that the convergence of PageRank is guaranteed only
if M is irreducible (i.e., G is strongly connected) and aperiodic [12]. The latter is
guaranteed in practice for the web, while the former is true if we add a dampening
factor to the rank propagation. We can define a new matrix M’ in which we add
transition edges of probability I—JQC between every pair of nodes in G:

M =cM + (1 — C) X [l]NxN
N
This modification improves the quality of PageRank by introducing a decay factor
which limits the effect of rank sinks [4], in addition to guaranteeing convergence to a
unique rank vector. For the above modification to M, an iteration of PageRank can
be expressed as follows:?

1
M’ x Rank = cM x Rank + (1 —c¢) x [N]NXI

We can bias PageRank to weight certain categories of pages by replacing the uniform
vector [%] Nx1 with the nonuniform N x 1 personalization vector p’as discussed in [4].
In terms of the random-walk model of PageRank, the personalization vector represents
the addition of a complete set of transition edges where the probability of edge (u,v)
is given by (1 — ¢) X p,. Although the matrix M’ that results from the modifications
discussed above is not sparse, we never need to store it explicitly. We need only the
ability to evaluate M’ x Rank efficiently.

2This equality makes use of the fact that ||Rank||; = 1

3 Efficient Memory Usage

If we momentarily ignore the scale of the web, the implementation of PageRank is very
simple. The sheer scale of the web, however, requires much greater care in the use of
data structures. We will begin with a detailed discussion of a naive implementation,
during which we will clarify the size of the datasets. The naive algorithm is useful for
gaining a clear understanding of matrix-vector multiplication in the specific context
of PageRank. We will then present an efficient version of the algorithm, reminiscent
of the block nested-loops-join algorithm, that substantially lowers the main memory
requirements. Similar strategies for fast in-memory matrix-vector multiplies are com-
monly used in the scientific computing community for improving caching behavior
[9, 14]. As we are dealing with massive web repositories in which the data structures
are measured in gigabytes and are stored on disk, we will take a more i/o-centric
approach in presenting the algorithm and its cost analysis. Empirical timing results
for both the naive and block-based approaches are presented.

3.1 The Naive Technique

The Stanford WebBase, our local repository of the web, currently contains roughly
25 million pages. There are over 81 million urls in the link graph, including urls
that were not themselves crawled, but exist in the bodies of crawled pages. For
our experiments, we first used a preprocessing step that removed dangling pages,
meaning pages with no children. Starting with the 81-million-node graph, all nodes
with outdegree 0 were removed. The step was repeated once more on the resulting
graph, yielding a subgraph with close to 19 million nodes. This process was needed
since the original graph is a truncated snapshot of the web with many dangling nodes.
Nodes with no outgoing links pointing back to the crawled subgraph can adversely
affect the PageRank assignment, as mentioned in Section 2. The node id’s were
assigned consecutively from 0 to 18,922,290. The link structure for the final graph,
referred to as Links, is stored on disk in a binary format, illustrated textually in
Figure 1. The source-id and each of the destination-id’s are stored as 32-bit integers.

Source Node Out Degree Destination Nodes
(32-bit id) (16-bit integer) (series of 32-bit id’s)
0 4 12, 26, 58, 94
1 3 15, 56, 81
2 5 9,10, 38, 45,78

Figure 1: The Link Structure

The outdegree is stored as a 16-bit integer. The size of the link structure, after the
preprocessing steps mentioned above, is 1.01 GB, and is assumed to exceed the size
of main memory.

The setup for the naive PageRank implementation is as follows. We create two
arrays of floating point values representing the rank vectors, called Source and Dest,
as conceptually shown in the matrix-vector multiplication given in Figure 2. Each

source node

Il
dest node

Dest Links matrix (sparse) Source

Figure 2: The Rank Vectors

vector has N entries, where N is the number of nodes in our web graph. In our
experiment, N was 18,922,290. The rank values for iteration ¢ are held in Source,
and the rank values for iteration ¢ + 1 are constructed in Dest. Using single-precision
values, these arrays for our particular graph have a combined size of over 150 MB.
The iteration steps can be expressed as follows (where ¢ is the dampening factor):

VsSource[s] = 1/N
while(residual > 1) {
VaDest[d] =0
while(not Links.eof()) {
Links.read(source, n, desty, dests, ..., dest,,)
forj=1...n
Dest|dest ;] = Dest|dest;] + Source[source]/n
}
VqDest[d] = ¢ x Dest[d] + 15¢ /* dampening or personalization*/
residual = ||Source — Dest|| /* recompute only every few iterations */
Source = Dest
¥
We make successive passes over Links, using the current rank values, held in Source,
to compute the next rank values, held in Dest. We can stop when the norm of the
difference between Source and Dest reaches some threshold, or alternatively after
a prechosen number of iterations. Assuming main memory is large enough to hold
Source and Dest, the i/o cost for each iteration of the above implementation is given
by:
C = |Links|

If main memory is large enough to hold only the Dest array, and we assume that the
link structure is sorted on the source field, the i/o cost is given by:

C = |Source| + |Dest| + |Links|

Source needs to be sequentially read from disk during the rank propagation step, and
Dest needs to be written to disk to serve as the Source vector for the subsequent
iteration.

Although many machines may have enough main memory to hold these arrays,
a larger crawl with 50 to 100 million pages clearly will result in rank vectors that

exceed the main memory of most computers. Considering that the publicly indexable
web now contains roughly 800 million pages [11], the naive approach is infeasible
for large subgraphs of the web. As mentioned above, if the link structure is sorted
on the source field, the accesses on Source will be sequential, and will not pose a
problem. However, the random access pattern on the Dest array leads the working
set of this implementation to equal the size of the Dest array. If the main memory
cannot accommodate the Dest array, the running time will increase dramatically and
the above cost analysis becomes invalid.

3.2 The Block-Based Strategy

There is a similarity between an iteration of PageRank and the relational join op-
erator. Let the children of node source in the structure Links be represented by
CHILDREN (source, Links). If we consider the two rank arrays Source and Dest
as relations, an iteration of PageRank is performing a join in which each entry source
of Source joins with each entry dest of Dest if dest €« CHILDREN (source, Links).
Instead of adjoining fields of two tuples, however, we are adding in the (scaled) value
of the Source entry to the Dest entry.

Although the analogy is not exact, the core technique used by the block-oriented
join strategy can be used to control the working set of the PageRank algorithm as well.
We will partition the Dest array, the cause of the large working set, into § blocks each
of size D pages, as illustrated in Figure 3. If P represents the size of main memory

source node

0 -

Il
dest node

Dest Links matrix (sparse) Source
Figure 3: Blocked Multiplication

in physical memory pages, then we require D < P — 2, since we must leave input
buffers for reading in Source and Links. The links file Links must be rearranged
to reflect this setup. We partition Links into (3 links files Linkso, ..., Linksg_1,
such that the destinations field in Links; contains only those nodes dest such that
B xi<dest <[x(i+1). In other words, the outgoing links of a node are bucketed
according to the range that the identifier of the destination page falls into. The
partitioning of the links of Figure 1 for the case of three blocks is shown in Figure 4.

This partitioning scheme obeys the equality:

CHILDREN (source, Links) = UCHILDREN(source,Link‘si)
i

Source Node Out Degre: Destination Node: N

gree. Num Out S Out Degree Out Destination Nodes
(32-bitid) (16-bit integer) (16-bit integer) (series of 32-bit id’s)

ource Node 2 Num
(32bitid) (16-bitinteger) (16-bitinteger) (series of 32-bit id’s)

0 4 2 12,26 0 4 1 58

1 3 1 15 1 2 1 56

2 5 2 9,10 2 5 2 38,45

Links Bucket 1 (0 <= dest < 32) Links Bucket 2 (32 <=dest < 64)

Source Node Out Degree Num Out Destination Nodes
(32-bit id) (16-bit integer) (16-bit integer) (series of 32-bit id’s)
0 4 1 94
1 2 1 81
2 5 1 78

Links Bucket 3 (64 <= dest < 96)

Figure 4: Partitioned Link File

Note that) |Links;| > |Links| because of the extra overhead caused by the redun-
dant storage of the source node and outdegree entries in each of the partitions. The
block-oriented algorithm proceeds as follows:
VsSource[s] = 1/N
while(residual > 1) {
fori=0...0—-1{
VdDesti[d] =0
while(not Links;.eof()) {
Links;.read(source, n, k, desty,dests, ..., desty)
forj=1...k
Dest;[dest;] = Dest;[dest;| + Source[source]/n
}
VyDest;[d] = ¢ x Dest;[d] + 15¢ /* dampening or personalization*/
Write Dest; to disk
}
residual = ||Source — Dest|| /* recompute only every few iterations */
Source = Dest

Because Links; is sorted on the source field, each pass through Links; requires
only one sequential pass through Source. The working set of this algorithm is ex-
actly P by design, so no swapping occurs. Define € to be such that the equality
i |Links;| = |Links| x (1 + €) is satisfied. The cost of this approach is then given
by:

C = (3 x |Source| + |Dest| + |Links| x (1 + ¢€)

In practice, € is reasonably small, as shown in Figure 7. The other cost introduced by
the partitioning scheme is the need to make 3 passes over the Source array. However,
since in practice we have |Links| > 5x|Source|, this additional overhead is reasonable.
Note that computing the residual during every iteration would require an additional

pass over Source, which is not included in the above cost analysis. We can largely
avoid this cost by computing the residual only at fixed intervals.

If we had stored the links in transpose format, in which each entry contained a
node and a list of parent nodes, then the above algorithm would remain essentially the
same, except that we would break the Source array into 3 blocks, and make multiple
passes over the Dest array. We would successively load in blocks of Source, and fully
distribute its rank according to Links! to all destinations in Dest. However, note
that each “pass” over the Dest array requires reading in the values from disk, adding
in the current Source block’s contributions, and then writing out the updated values
to disk. Thus using Links” rather than Links incurs an additional i/o cost of |Dest|,
since Dest is both read and written on each pass.

In order to take advantage of sequential read transfer benefits, we can load in
more than one page of Source and Links; at a time as we stream them in. This
buffering reduces the effective time required per pass of Source and Links, at the
expense of increasing . The best strategy for allocating memory between the three
data structures is dependent on the machine and disk architecture, although any
reasonable allocation will allow the PageRank algorithm to be used efficiently in
cases where the Rank vectors exceed main memory.

3.3 Timing Results

For our experiments, we used a 450MHz Pentium-III machine with a 7200-RPM
Western Digital Caviar AC418000 hard disk. We measured the running times of
PageRank over roughly 19 million pages using three different partitionings of the
Dest array: 1-block (i.e., naive), 2-blocks, and 4-blocks. The expected memory usage
is given in Figure 5. We tested the three partitioning strategies on three different
memory configurations: 256 MB, 64 MB, and 32 MB.

The time required per iteration of PageRank is given for each of the three parti-
tionings under each of the three memory configurations in Figure 6. As expected, the
most efficient strategy is to partition the Dest array (and the corresponding Links
structure) into enough blocks so that a single Dest block can fit in physical memory.
Using too many blocks slightly degrades performance, as both the number of passes
over Source and the size of Links increase. Figure 7 shows the total size of the link
structure for the three partitionings, as well as the associated ¢, as discussed in Sec-
tion 3.2. Using too few blocks, however, degrades performance by several orders of
magnitude. For the cases in Figure 6 where the block size exceeds physical memory,
we had to estimate the full iteration time from a partially completed iteration, as the
running times were unreasonably high.

The blocking strategy commonly used for other algorithms, including the rela-
tional join operator, is very effective in controlling the memory requirements of Page-
Rank. The block-based PageRank is not an approximation of normal PageRank: the
same matrix-vector multiplication M’ x Source is performed whether or not Dest and
Links are partitioned. The resultant PageRank vector is identical regardless of the
number of blocks used. As the Stanford WebBase increases in size to several hundreds

Minutes per iteration

(Log Scale)

100000

10000

1000

100

Number of Blocks Expected Working Set

1 72 MB
2 36 MB
4 18 MB

Figure 5: Expected Memory Usage

256 MB 64 MB 32 MB

Physical Memory

i Naive (1 Block)
" 2 Blocks
[34 Blocks

Figure 6: Log Plot of Running Times

Number of Blocks Size of Links <
1 1.01 GB 0
2 1.14 GB 0.13
4 1.29 GB 0.28

Figure 7: Link Structure Growth

of millions of pages, the block-oriented technique will be essential in computing Page-
Rank, even on machines with fairly large amounts of main memory. Furthermore, the
block-oriented technique will be necessary for allowing individual users to compute
their own personalized PageRank.

4 Accuracy

When computing PageRank, we can use either single-precision or double-precision
values for the Source and Dest arrays. Using double-precision for Source and Dest,
however, would adversely affect the running time by doubling the sizes of the two
vectors. Here we show that single-precision Source and Dest vectors are sufficient.
Double-precision values should be used for any individual variables, such as the cur-
rent residual or the current total rank. These individual variables of course have
negligible impact on the memory footprint.

The use of single-precision Rank vectors does not lead to significant numerical
error. We computed PageRank for 100 iterations using single-precision Source and
Dest vectors. We converted the final computed PageRank vector to the equivalent
double-precision vector, and performed a double-precision iteration step to get an
accurate value for the residual: 2.575 x 10~*. We then recomputed PageRank for 100
iterations using exclusively double-precision vectors, but found that the residual of
the final vector had not noticeably improved: 2.571 x 1074,

5 Convergence Analysis

Although PageRank is guaranteed to converge given the conditions mentioned in Sec-
tion 2, there are several measures we can use to analyze the convergence rate. The
residual, which is the norm of the difference of the PageRank vectors from two succes-
sive iterations as discussed in Section 2, is one possible measure of the convergence.
A more useful approach to analyzing the convergence involves looking at the ordering
of pages induced by the Rank vector. If the PageRank values will be used strictly for
determining the relative importance of pages, the convergence should be measured
based on how the ordering changes as the number of iterations increases. In this
section, we will discuss various techniques for analyzing the convergence of induced
orderings. Depending on the final application of the rankings, we can concentrate
on the ordering induced over all pages or on the ordering induced over results to
specific queries. We will first discuss global orderings, and then look at query specific
orderings.

5.1 Global Ordering

The global ordering induced by PageRank provides an insightful view into the con-
vergence rate. We analyze the convergence of the induced ordering in two ways: a
histogram of the difference in positions of pages within two orderings, and a similarity
measure between two ordered listings.

When analyzing the change in page ordering while varying the number of itera-
tions, we are more concerned with instability among the top ranked pages; whether

10

5vs 100 iterations 10 vs 100 iterations

1,800 1,800

@ 1.600 &8 1600

2 1.400 2 1,400

2 1200 & 1200

g 1,000 3 1,000

8 s 3 00

E 600 E 600

2 400 =Z 400

200 200

0] 0

0 100,000 200,000 300,000 400,000 500,000 o 100,000 200,000 300,000 400,000 500,000
Difference in Position Difference in Position
25 vs 100 iterations 50 vs 100 iterations

5,000 18,000

4,500 16,000

9§ 4000 8 14,000

E’ 3,500 4 12,000

- 3,000 = 10,000

22’500 e slooo
g 2,000 g "

E 1,500 g 6,000

2 1000 2 4000

500 2,000

0 . — 0

0 100,000 200,000 300,000 400,000 500,000 0 100,000 200,000 300,000 400,000 500,000
Difference in Position Difference in Position

Figure 8: Histograms of Position Difference

or not we deem that a particular page is the least important or the second least
important is usually irrelevant.

Figure 8 shows histograms, with a bucket size of 100, of position differences for the
orderings induced by various numbers of iterations, when compared with the ordering
induced by 100 iterations. We considered a page if and only if at least one of the
orderings placed it among the top 1 million, to account for our intuition that the
ordering among highly ranked pages is more significant. For the ordering induced
by 50 iterations, we see that the bulk of pages occur at similar positions as in the
ordering induced by 100 iterations.

We now turn to the similarity measure. In many scenarios, we are only concerned
with identifying the top pages — we may not necessarily need an exact ordering among
them. For instance, if we only have the resources to index (or otherwise process) a
small subset of the web, we might choose to concentrate on the (unordered) set of
the most highly ranked pages. We define the similarity of two sets of pages A and B
to be iﬁggi. To visualize how closely two ordered rankings agree on identifying the
top pages, we successively compute the similarity among the top n pages according
to each ordering, as n is increased in stepped increments. Figure 9 is a graph of the
similarity of orderings as n is increased, in steps of 100, to 1 million pages. Here
we see that the ordering induced by only 25 iterations agrees very closely with the

ordering induced by 100 iterations on what the top pages are.

5.2 Query Specific Ordering

PageRank is currently used predominantly for the ranking of search results. Although
analyzing the global ordering is useful in certain applications, we show here that much
of the instability in the ordering across iterations tends to affect the relative rankings

11

50 vs 100 iterations
25 vs 100 iterations

1
AA

0.9 Wv;.p-r-ﬁ fff

R - ————————— e S (— 10 vs 100 iterations

. ”/F{’_’__—”mi ”””””””””””””””””””””””””” f 5 vs 100 iterations

ot —_—
2
£
Sosgltfo
£
w ,,,
0.3 oo
R
I e
0 :
N S S S S S S ® ® S S
XS XS XS & & S & & S
N P Y ® S & R $ oY $

N (Number of Pages Considered)
Figure 9: Global Similarity

only of unrelated pages. Just as we are often more concerned with instability among
highly ranked pages, we are also often more concerned with instability among pages
that are likely to co-occur in the results of a search query.

As before, PageRank is computed only once, yielding a global ordering over web
pages. When investigating query-specific ordering, however, we take a subset of these
pages, corresponding to the results of a conjunctive search query, and analyze the
relative ordering of pages within this result set. Here we analyze the convergence for
the induced orderings of the results of two typical search queries. For the games query,
we retrieved the urls of all pages in the WebBase that contained the words ‘action’,
‘adventure’, ‘game’, ‘role’, and ‘playing’. For the music query, we retrieved the urls
of all pages that contained the words ‘music’ and ‘literature’. Out of the roughly 20
million pages used for the query, 1,567 urls satisfied the games query, and 19,341 urls
satisfied the music query. We can see in Figures 10 and 11 that the orderings induced
by only 10 iterations agree fairly well with the orderings induced by 100 iterations.
The PageRank process seems to converge very quickly when viewed in the context of
query results.

The residual vector M’ x Rank; — Rank;, while appealing in a mathematical sense,
is only a myopic view of the convergence rate. Looking at the induced ordering pro-
vides a more practical view of the convergence behavior. The techniques we discussed
are applicable in a broader context as well — we have used them to measure the dif-
ference in orderings induced by various personalizations of PageRank, in which the
number of iterations remains constant.

6 Future Work

Personalization of web-based information retrieval will become an increasingly impor-
tant area of research as the amount of available data on the web continues to grow.

12

Similarity

Similarity

50 vs 100 iterations
25 vs 100 iterations
10 vs 100 iterations

5 vs 100 iterations

S D P PP S

N (Number of Pages Considered)

Figure 10: Games Query Similarity

50 vs 100 iterations

25 vs 100 iterations
10 vs 100 iterations

5 vs 100 iterations

S O
R P

S & DL ¥ & ,'90 ,,:79 q,@ ,LQ:Q

N (Number of Pages Considered)

Figure 11: Music Query Similarity

We have shown that PageRank can be computed efficiently on modestly equipped
machines, suggesting that individual users can compute their own personalized Page-
Rank vectors. We will be investigating the most effective means of constructing the
personalization vector, as discussed in Section 2, so that the resultant ranking vector
best captures the user’s notion of the importance of a page. We envision utilizing a
user’s browsing history and bookmark collection to build the personalization vector.

In Section 5.2 we empirically showed that an accurate PageRank vector can be
computed in as few as 10 iterations, if accuracy is measured in the context of the
induced ordering of results to conjunctive search queries. This convergence result
suggests further experiments to determine to what extent the exact nature of the
query affects how many iterations are needed before the induced ordering of the query
result stabilizes. Using the methods discussed in this paper for analyzing the effect
on induced ordering, we will further explore techniques for speeding up PageRank
computation while minimizing the loss of accuracy.

7 Conclusion

Algorithms harnessing the link structure of the web are becoming increasingly useful
as tools to present relevant results to search queries. Although the PageRank algo-
rithm is based on a simple idea, scaling its implementation to operate on large sub-
graphs of the web requires careful arrangement of the data. We have demonstrated
that PageRank can be run on modestly equipped machines. We have determined
that single-precision Rank vectors are sufficient for accurate computation. We have
presented several ways of analyzing the convergence of the algorithm, based on the or-
dering induced on web pages by the Rank vector. By looking at the ordering induced
on specific query results, we have shown that even as few as 10 iterations can provide
a useful ranking assignment. Given the timing results of Section 3.3, this convergence
rate implies that we can compute a useful PageRank vector on a modestly equipped
machine in roughly an hour, demonstrating the feasibility of client-side computation
of personalized PageRank.

14

Acknowledgements

I would like to thank Professor Jeff Ullman and Professor Rajeev Motwani, as well as
the rest of the Stanford MIDAS group, for invaluable discussions regarding the ideas
in this paper. I would also like to thank the Stanford WebBase team for access to the
web crawl data.

References

Search Engine Watch: Up-to-date information on leading search engines. Located at
http://www.searchenginewatch.com/.

The Google Search Engine: Commercial search engine founded by the originators of
PageRank. Located at http://www.google.com/.

K. Bharat and A. Broder. A technique for measuring the relative size and overlap of
public web search engines. In Proceedings of the Seventh International World Wide Web
Conference, 1998.

S. Brin, R. Motwani, L. Page, and T. Winograd. What can you do with a web in
your pocket. In Bulletin of the IEEE Computer Society Technical Committee on Data
Engineering, 1998.

S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. In
Proceedings of the Seventh International World Wide Web Conference, 1998.

S. Chakrabarti, B. Dom, D. Gibson, J. Kleinberg, P. Raghavan, and S. Rajagopalan.
Automatic resource compilation by analyzing hyperlink structure and associated text.
In Proceedings of the Seventh International World Wide Web Conference, 1998.

S. Chakrabarti, M. van den Berg, and B. Dom. Focused crawling: A new approach to
topic-specific web resource discovery. In Proceedings of the FEighth International World
Wide Web Conference, 1999.

J. Dean and M. Henzinger. Finding related pages in the world wide web. In Proceedings
of the Fighth International World Wide Web Conference, 1999.

E.-J. Im and K. Yelick. Optimizing sparse matrix vector multiplication on smps. In Pro-
ceedings of the Ninth SIAM Conference on Parallel Processing for Scientific Computing,
1999.

J. Kleinberg. Authoritative sources in a hyperlinked environment. In Proceedings of the
ACM-SIAM Symposium on Discrete Algorithms, 1998.

S. Lawrence and C. L. Giles. Accessibility of information on the web. Nature, 400:107—
109, July 1999.

R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press,
United Kingdom, 1995.

R. Ramakrishnan. Database Management Systems. McGraw-Hill, 1998.

S. Toledo. Improving the memory-system performance of sparse-matrix vector multipli-
cation. In IBM Journal of Research and Development, volume 41. IBM, 1997.

15

