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ABSTRACT
In this paper we propose a new information-theoretic divi-
sive algorithm for word clustering applied to text classifica-
tion. In previous work, such “distributional clustering” of
features has been found to achieve improvements over fea-
ture selection in terms of classification accuracy, especially
at lower number of features [2, 28]. However the existing
clustering techniques are agglomerative in nature and re-
sult in (i) sub-optimal word clusters and (ii) high compu-
tational cost. In order to explicitly capture the optimal-
ity of word clusters in an information theoretic framework,
we first derive a global criterion for feature clustering. We
then present a fast, divisive algorithm that monotonically
decreases this objective function value, thus converging to a
local minimum. We show that our algorithm minimizes the
“within-cluster Jensen-Shannon divergence” while simulta-
neously maximizing the “between-cluster Jensen-Shannon
divergence”. In comparison to the previously proposed ag-
glomerative strategies our divisive algorithm achieves higher
classification accuracy especially at lower number of fea-
tures. We further show that feature clustering is an effective
technique for building smaller class models in hierarchical
classification. We present detailed experimental results us-
ing Naive Bayes and Support Vector Machines on the 20
Newsgroups data set and a 3-level hierarchy of HTML doc-
uments collected from Dmoz Open Directory.

1. INTRODUCTION
Given a set of document vectors {d1, d2, . . . , dn} and their

associated class labels c(di) ∈ {c1, c2, . . . , cl}, text classifi-
cation is the problem of estimating the true class label of a
new document d. There exist a wide variety of algorithms
for text classification, ranging from the simple but effec-
tive Naive Bayes algorithm to the more computationally de-
manding Support Vector Machines [24, 10, 29].

A common, and often overwhelming, characteristic of text
data is its extremely high dimensionality. Typically the doc-
ument vectors are formed using a vector-space or bag-of-
words model[26]. Even a moderately sized document collec-
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tion can lead to a dimensionality in thousands, for exam-
ple, one of our test data sets contains 5,000 web pages from
www.dmoz.org and has a dimensionality (vocabulary size) of
14,538. This high dimensionality can be a severe obstacle for
classification algorithms based on Support Vector Machines,
Linear Discriminant Analysis, k-nearest neighbor etc. The
problem is compounded when the documents are arranged
in a hierarchy of classes and a full-feature classifier is applied
at each node of the hierarchy.

A way to reduce dimensionality is by the distributional
clustering of words/features [25, 2, 28]. Each word cluster
can then be treated as a single feature and thus dimension-
ality can be drastically reduced. As shown by [2, 28], such
feature clustering is more effective than feature selection[30],
especially at lower number of features. Also, feature cluster-
ing appears to preserve classification accuracy as compared
to a full-feature classifier. Indeed in some cases of small
training sets and noisy features, word clustering can actu-
ally increase classification accuracy. However the algorithms
given in both [2] and [28] are agglomerative in nature yield-
ing sub-optimal word clusters at a high computational cost.

In this paper, we first derive a global criterion that cap-
tures the optimality of word clustering in an information-
theoretic framework. This leads to an objective function for
clustering that is based on the generalized Jensen-Shannon
divergence[20] among an arbitrary number of probability
distributions. In order to find the best word clustering,
i.e., the clustering that minimizes this objective function,
we present a new divisive algorithm for clustering words.
This algorithm is reminiscent of the k-means algorithm but
uses Kullback Leibler divergences[19] instead of squared Eu-
clidean distances. We prove that our divisive algorithm
monotonically decreases the objective function value, thus
converging to a local minimum. We also show that our al-
gorithm minimizes “within-cluster divergence” and simulta-
neously maximizes “between-cluster divergence”. Thus we
find word clusters that are markedly better than the ag-
glomerative algorithms of [2, 28]. The increased quality of
our word clusters translates to higher classification accura-
cies, especially at small feature sizes and small training sets.
We provide empirical evidence of all the above claims us-
ing Naive Bayes and Support Vector Machines on the (a) 20
Newsgroups data set, and (b) an HTML data set compris-
ing 5,000 web pages arranged in a 3-level hierarchy from the
Open Directory Project (www.dmoz.org).

We now give a brief outline of the paper. In Section 2,
we discuss related work and contrast it with our work. In
Section 3 we briefly review some useful concepts from in-



formation theory such as Kullback-Leibler(KL) divergence
and Jensen-Shannon(JS) divergence, while in Section 4 we
review text classifiers based on Naive Bayes and Support
Vector Machines. Section 5 poses the question of finding
optimal word clusters in terms of preserving mutual infor-
mation between two random variables. Section 5.1 gives
the algorithm that directly minimizes the resulting objec-
tive function which is based on KL-divergences, and presents
some pleasing results about the algorithm, such as conver-
gence and simultaneous maximization of “between-cluster
JS-divergence”. In Section 6 we present experimental re-
sults that show the superiority of our word clustering, and
the resulting increase in classification accuracy. Finally, we
present our conclusions in Section 7.

A word about notation: upper-case letters such as X,
Y , C, W will denote random variables, while script upper-
case letters such as X , Y, C, W denote sets. Individual set
elements will often be denoted by lower-case letters such as
x, w or xi, wt. Probability distributions will be denoted
by p, q, p1, p2, etc. when the random variable is obvious or
by p(X), p(C|wt), etc. to make the random variable explicit.

2. RELATED WORK
Text classification has been extensively studied, especially

since the emergence of the internet. Most algorithms are
based on the bag-of-words model for text [26]. A simple
but effective algorithm is the Naive Bayes method [24]. For
text classification, different variants of Naive Bayes have
been used, but McCallum and Nigam [21] showed that the
variant based on the multinomial model leads to better re-
sults. For hierarchical text data, such as the topic hierar-
chies of Yahoo! (www.yahoo.com) and the Open Directory
Project (www.dmoz.org), hierarchical classification has been
studied in [18, 5]. For more details, see Section 4.

To counter high-dimensionality various methods of feature
selection have been proposed in [30, 18, 5]. Distributional
clustering of words was first proposed by Pereira, Tishby &
Lee in [25] where they used “soft” distributional clustering
to cluster nouns according to their conditional verb distri-
butions. Note that since our main goal is to reduce the num-
ber of features and the model size, we are only interested in
“hard clustering” where each word can be represented by its
(unique) word cluster. For text classification, Baker & Mc-
Callum used such hard clustering in [2], while more recently,
Slonim & Tishby have used the so-called Information Bot-
tleneck method for clustering words in [28]. Both [2] & [28]
use similar agglomerative clustering strategies that make a
greedy move at every agglomeration, and show that feature
size can be aggressively reduced by such clustering without
much loss in classification accuracy using Naive Bayes. Sim-
ilar results have been reported for SVMs[3].

Two other dimensionality/feature reduction schemes are
used in latent semantic indexing (LSI) [7] and its probabilis-
tic version [16]. Typically these methods have been applied
in the unsupervised setting and as shown in [2], LSI results
in lower classification accuracies than feature clustering.

We now list the main contributions of this paper and con-
trast them with earlier work. As our first contribution, we
derive a global criterion that explicitly captures the optimal-
ity of word clusters in an information theoretic framework.
This leads to an objective function in terms of the general-
ized Jensen-Shannon divergence between an arbitrary num-
ber of probability distributions. As our second contribu-

tion, we present a divisive algorithm that uses Kullback-
Leibler divergence as the distance measure, and explicitly
minimizes the global objective function. This is in contrast
to [28] which considered the merging of just two word clus-
ters at every step and derived a local criterion based on
the Jensen-Shannon divergence of two probability distribu-
tions. Their agglomerative algorithm, which is similar to
Baker and McCallum’s algorithm [2], greedily optimizes this
merging criterion. Thus, their resulting algorithm can yield
sub-optimal clusters and is computationally expensive (the
algorithm in [28] is O(m3l) in complexity where m is the to-
tal number of words and l is the number of classes). In con-
trast our divisive algorithm is O(mkl) where k is the number
of word clusters required (typically k ¿ m). Note that our
hard clustering leads to a model size of O(k), whereas “soft”
clustering in methods such as probabilistic LSI [16] leads to
a model size of O(mk). Finally, we show that our enhanced
word clustering leads to higher classification accuracy, es-
pecially when the training set is small and in hierarchical
classification of HTML data.

3. INFORMATION THEORY
In this section, we quickly review some concepts from in-

formation theory which will be used heavily in this paper.
For more details on some of this material see the authorita-
tive treatment in the book by Cover & Thomas [6].

Let X be a discrete random variable that takes on val-
ues from the set X with probability distribution p(x). The
(Shannon) entropy of X [27] is defined as

H(p) = −
X

x∈X
p(x) log p(x).

The relative entropy or Kullback-Leibler(KL) divergence [19]
between two distributions p1(x) and p2(x) is defined as

KL(p1, p2) =
X

x∈X
p1(x) log

p1(x)

p2(x)
.

KL-divergence is a measure of the “distance” between two
probability distributions; however it is not a true metric
since it is not symmetric and does not obey the triangle in-
equality [6, p.18]. KL-divergence is always non-negative but
can be unbounded; in particular when p1(x) 6= 0 and p2(x) =
0, KL(p1, p2) =∞. In contrast, the Jensen-Shannon(JS) di-
vergence between p1 and p2 defined by

JSπ(p1, p2) = π1KL(p1, π1p1+π2p2) + π2KL(p2, π1p1 + π2p2)

= H(π1p1 + π2p2)− π1H(p1)− π2H(p2),

where π1 + π2 = 1, πi ≥ 0, is clearly a measure that is
symmetric in {π1, p1} and {π2, p2}, and is bounded [20]. The
JS-divergence can be generalized to measure the distance
between any finite number of probability distributions as:

JSπ({pi : 1 ≤ i ≤ n}) = H

Ã
nX

i=1

πipi

!
−

nX

i=1

πiH(pi), (1)

which is symmetric in the {πi, pi}’s (
P
i πi = 1, πi ≥ 0).

Let Y be another random variable with probability dis-
tribution p(y). The mutual information between X and Y,
I(X;Y ), is defined as the KL-divergence between the joint
distribution p(x, y) and the product distribution p(x)p(y):

I(X;Y ) =
X

x

X

y

p(x, y) log
p(x, y)

p(x)p(y)
. (2)



Intuitively, mutual information is a measure of the amount
of information that one random variable contains about the
other. The higher its value the less is the uncertainty of
one random variable due to knowledge about the other.
Formally, it can be shown that I(X;Y ) is the reduction
in entropy of one variable knowing the other: I(X;Y ) =
H(X)−H(X|Y ) = H(Y )−H(Y |X) [6].

4. TEXT CLASSIFICATION
Two contrasting classifiers that perform well on text clas-

sification are (i) the simple Naive Bayes method and (ii) the
more complex Support Vector Machines. We now give de-
tails on these classifiers.

4.1 Naive Bayes Classifier
Let C = {c1, c2, . . . , cl} be the set of l classes, and let
W = {w1, . . . , wm} be the set of words/features contained
in these classes. Given a new document d, the probability
that d belongs to class ci is given by Bayes rule,

p(ci|d) =
p(d|ci)p(ci)

p(d)
.

Assuming a generative multinomial model [21] and further
assuming class-conditional independence of words yields the
well-known Naive Bayes classifier [24], which computes the
most probable class for d as

c∗(d) = argmaxci

Ã
p(ci|d) = p(ci)

mY

t=1

p(wt|ci)n(wt,d)

!
(3)

where n(wt, d) is the number of occurrences of word wt in
document d, and the quantities p(wt|ci) are usually esti-
mated using Laplace’s rule of succession:

p(wt|ci) =
1 +

P
dj∈ci n(wt, dj)

m+
Pm
t=1

P
dj∈ci n(wt, dj)

. (4)

The class priors p(ci) are estimated by the maximum like-

lihood estimate p(ci) = |ci|P
j |cj |

. We now manipulate the

Naive Bayes rule in order to interpret it in an information
theoretic framework. Rewrite formula (3) by taking loga-
rithms and dividing by the length of the document |d| to get

c∗(d) = argmaxci(log p(ci) +
mX

t=1

p(wt|d) log p(wt|ci)), (5)

where the document d may be viewed as a probability dis-
tribution over words: p(wt|d) = n(wt, d)/|d|. Adding the
entropy of p(W |d), i.e., −Pm

t=1 p(wt|d) log p(wt|d) to (5),
and negating, we get

c∗(d) = argminci

mX

t=1

p(wt|d) log
p(wt|d)

p(wt|ci)
− log p(ci) (6)

= argminci (KL(p(W |d), p(W |ci))− log p(ci)) ,

where KL(p, q) denotes the KL-divergence between p and q
as defined in Section 3. Note that here we have used W
to denote the random variable that takes values from the
setW. Thus, assuming equal class priors, we see that Naive
Bayes may be interpreted as finding the class which has min-
imum KL-divergence from the given document. As we shall
see again later, KL-divergence seems to appear “naturally”
in our setting.

By (5), we can clearly see that Naive Bayes is a linear
classifier. Despite its crude assumption about the class-
conditional independence of words, Naive Bayes has been
found to yield surprisingly good classification performance,
especially on text data. Plausible reasons for the success of
Naive Bayes have been explored in [9, 12].

4.2 Support Vector Machines
Support Vector Machines(SVMs)[29] are inductive learn-

ing schemes for solving the two class pattern recognition
problem. Recently SVMs have been shown to give good re-
sults for text categorization [17]. The method is defined over
a vector space where the classification problem is to find the
decision surface that “best” separates the data points of the
two classes. In the case of linearly separable data, the de-
cision surface is a hyperplane that maximizes the “margin”
between the two classes. This hyperplane can be written
as ~w.~x − b = 0, where ~x is a data point and the vector
~w and constant b are learned from the training set. Let
yi ∈ {+1,−1}(+1 for positive class and −1 for negative
class) be the classification label for input vector ~xi. Finding
the hyperplane can be translated into the following opti-
mization problem

Minimize : ||~w||
subject to ~w.~xi − b ≥ +1 for yi = +1,

~w.~xi − b ≤ −1 for yi = −1.

This minimization problem can be solved using quadratic
programming techniques[29]. The algorithms for solving the
linearly separable case can be extended to the case of data
that is not linearly separable by either introducing soft mar-
gin hyperplanes or by using a non-linear mapping of the orig-
inal data vectors to a higher dimensional space where the
data points are linearly separable[29]. Even though SVM
classifiers are described as binary classifiers they can be eas-
ily combined to handle the multi class case. A simple, effec-
tive combination is to train N one-versus-rest classifiers for
the N class case and then classify the test point to the class
corresponding to the largest positive distance to the separat-
ing hyperplane. In all our experiments we used linear SVMs
because they are fast to learn and classify new instances
compared to non-linear SVMs. Further, linear SVMs have
been shown to do well on text classification[17].

4.3 Hierarchical Classification
Hierarchical classification utilizes a hierarchical topic struc-

ture such as Yahoo! to decompose the classification task into
a set of simpler problems, one at each node in the hierar-
chy. We can simply extend any classifier to perform hier-
archical classification by constructing a (distinct) classifier
at each internal node of the tree using all the documents
in its child nodes as the training data. Thus the tree is
assumed to be “is-a” hierarchy, i.e., the training instances
are inherited by the parents. Then classification is just a
greedy descent down the tree until the leaf node is reached.
This way of classification has been shown to be equivalent to
the standard non-hierarchical classification over a flat set of
leaf classes if maximum likelihood estimates of all features
are used[23]. However, hierarchical classification along with
feature selection has been shown to achieve better classi-
fication results than a flat classifier[18]. This is because
each classifier can now utilize a different subset of features
that are most relevant to the classification sub-task at hand.



Furthermore each node classifier requires only a small num-
ber of features since it needs to distinguish between a fewer
number of classes. Our proposed feature clustering strategy
allows us to aggressively reduce the number of features as-
sociated with each node classifier in the hierarchy. Detailed
experiments on the Dmoz Science hierarchy are presented in
Section 6.

5. DISTRIBUTIONAL WORD CLUSTERING
Let C be a discrete random variable that takes on val-

ues from the set of classes C = {c1, . . . , cl}, and let W
be the random variable that ranges over the set of words
W = {w1, . . . , wm}. The joint distribution p(C,W ) can be
estimated from the training set. Now suppose we cluster the
words into k clusters W1, . . . ,Wk. Since we are interested
in reducing the number of features and the model size, we
only look at “hard” clustering where each word belongs to
exactly one word cluster, i.e,

W = ∪ki=1Wi, and Wi ∩Wj = φ, i 6= j.

Let the random variable WC range over the word clusters.
In order to judge the quality of the word clusters we now
introduce an information-theoretic measure.

The information about C captured by W can be mea-
sured by the mutual information I(C;W ). Ideally, in form-
ing word clusters we would like to exactly preserve the mu-
tual information; however clustering usually lowers mutual
information. Thus we would like to find a clustering that
minimizes the decrease in mutual information, I(C;W ) −
I(C;WC). The following theorem states that this change in
mutual information can be expressed in terms of the gener-
alized Jensen-Shannon divergence of each word cluster.

Theorem 1. The change in mutual information due to
word clustering is given by

I(C;W )− I(C;WC) =
kX

j=1

π(Wj)JSπ′({p(C|wt) : wt ∈ Wj})

where π(Wj) =
P
wt∈Wj

πt, πt = p(wt), π′t = πt/π(Wj)

for wt ∈ Wj , and JS denotes the generalized Jensen-Shannon
divergence as defined in (1).

Proof. By the definition of mutual information (see (2)),
and using p(ci, wt) = πtp(ci|wt) we get

I(C;W ) =
X

i

X

t

πtp(ci|wt) log
p(ci|wt)
p(ci)

and I(C;WC) =
X

i

X

j

π(Wj)p(ci|Wj) log
p(ci|Wj)

p(ci)
.

We are interested in hard clustering, so π(Wj) =
P
wt∈Wj

πt

and p(ci|Wj) =
P
wt∈Wj

(πt/π(Wj))p(ci|wt), thus imply-

ing that for all clusters Wj ,

π(Wj)p(ci|Wj) =
X

wt∈Wj

πtp(ci|wt), (7)

p(C|Wj) =
X

wt∈Wj

πt
π(Wj)

p(C|wt). (8)

Note that the distribution p(C|Wj) is the (weighted) mean

distribution of the constituent distributions p(C|wt). Thus,

I(C;W )− I(C;WC) =
X

i

X

t

πtp(ci|wt) log p(ci|wt)−
X

i

X

j

π(Wj)p(ci|Wj) log p(ci|Wj) (9)

since the extra log(p(ci)) terms cancel due to (7). The first
term in (9), after rearranging the sum, may be written as

X

j

X

wt∈Wj

πt

Ã X

i

p(ci|wt) log p(ci|wt)
!

= −
X

j

X

wt∈Wj

πtH(p(C|wt))

= −
X

j

π(Wj)
X

wt∈Wj

πt
π(Wj)

H(p(C|wt)). (10)

Similarly, the second term in (9) may be written as

X

j

π(Wj)

Ã X

i

p(ci|Wj) log p(ci|Wj)

!

= −
X

j

π(Wj)H(p(C|Wj))

= −
X

j

π(Wj)H

0
B@

X

wt∈Wj

πt
π(Wj)

p(C|wt)

1
CA (11)

where (11) is obtained by substituting the value of p(C|W j)
from (8). Substituting (10) and (11) in (9) and using the
definition of Jensen-Shannon divergence from (1) gives us
the desired result. tu

Theorem 1 gives a global measure of the goodness of word
clusters, which may be informally interpreted as follows:

1. The quality of word cluster Wj is measured by the
Jensen-Shannon divergence between the individual word
distributions p(C|wt) (weighted by the word priors,
πt = p(wt)). The smaller the Jensen-Shannon diver-
gence the more “compact” is the word cluster, i.e.,
smaller is the increase in entropy due to clustering (see (1)).

2. The overall goodness of the word clustering is mea-
sured by the sum of the qualities of individual word
clusters (weighted by the cluster priors π(Wj) = p(Wj)).

Given the global criterion of Theorem 1, we would now
like to find an algorithm that searches for the optimal word
clustering that minimizes this criterion. We now rewrite this
criterion in a way that will suggest a “natural” algorithm.

Lemma 1. The generalized Jensen-Shannon divergence of
a finite set of probability distributions can be expressed as
the (weighted) sum of Kullback-Leibler divergences to the
(weighted) mean, i.e.,

JSπ({pi : 1 ≤ i ≤ n}) =
nX

i=1

πiKL(pi,m) (12)

where πi ≥ 0,
P
i πi = 1 and m is the (weighted) mean prob-

ability distribution, m =
P
i πipi.



Algorithm Divisive KL Clustering(P,Π,l,k,W)

Input: P is the set of distributions, {p(C|wt) : 1 ≤ t ≤ m},
Π is the set of all word priors, {πt = p(wt) : 1 ≤ t ≤ m}
l is the number of document classes,
k is the number of desired clusters.

Output: W is the set of word clusters {W1,W2, . . . ,Wk}.

1. Initialization: for every word wt, assign wt to Wj

such that p(cj |wt) = maxi p(ci|wt). This gives l initial
word clusters; if k ≥ l split each cluster into approxi-
mately k/l clusters, otherwise merge the l clusters to
get k word clusters.

2. For each cluster Wj , compute

π(Wj) =
X

wt∈Wj

πt

p(C|Wj) =
X

wt∈Wj

πt
π(Wj)

p(C|wt).

3. Re-compute all clusters: For each word wt, find its
new cluster index as

j∗(wt) = argmini KL(p(C|wt), p(C|Wi)),

resolving ties arbitrarily. Thus compute the new word
clusters Wj , 1 ≤ j ≤ k, as

Wj = {wt : j∗(wt) = j}.

4. Stop if the change in objective function value given by
(13) is “small” (say 10−3); Else go to step 2.

Figure 1: Divisive Algorithm for word clustering
based on KL-divergences

Proof. Use the definition of entropy to expand the ex-
pression for JS-divergence given in (1). The result follows
by appropriately grouping terms and using the definition of
KL-divergence. tu

5.1 The Algorithm
By Theorem 1 and Lemma 1, the decrease in mutual in-

formation due to word clustering may be written as

kX

j=1

π(Wj)
X

wt∈Wj

πt
π(Wj)

KL(p(C|wt), p(C|Wj)).

As a result the quality of word clustering can be measured
by the objective function

Q({Wj}kj=1) = I(C;W )− I(C;WC)

=

kX

j=1

X

wt∈Wj

πtKL(p(C|wt), p(C|Wj)). (13)

Note that it is natural that the KL-divergence emerges as the
distance measure in the above objective function since mu-
tual information is just the KL-divergence between the joint
distribution and the product distribution (see Section 3).
Writing the objective function in the above manner suggests

an iterative algorithm that repeatedly (i) re-partitions the
distributions p(C|wt) by their closeness in KL-divergence
to the cluster distributions p(C|Wj), and (ii) subsequently,
given the new word clusters, re-computes these cluster distri-
butions using (8). Figure 1 describes the algorithm in detail.
Note that this divisive algorithm bears some resemblance to
the k-means or Lloyd-Max algorithm, which usually uses
squared Euclidean distances [11, 10, 15, 4].

Note that our initialization strategy is crucial to our algo-
rithm, see step 1 in Figure 1 (also see [8, Section 5.1]) since it
guarantees absolute continuity of each p(C|wt) with at least
one cluster distribution p(C|Wj), i.e., guarantees that at
least one KL-divergence is finite. This is because our initial-
ization strategy ensures that every word wt is part of some
cluster Wj . Thus by the formula for p(C|Wj) in step 2, it
cannot happen that p(ci|wt) 6= 0, and p(ci|Wj) = 0. Note
that we can still get some infinite KL-divergence values but
these do not lead to any difficulty (indeed in an implemen-
tation we can handle such “infinity problems” without an
extra “if” condition thanks to the handling of “infinity” in
the IEEE floating point standard [14, 1]).

We now discuss the computational complexity of our al-
gorithm. Step 3 of each iteration requires the KL-divergence
to be computed for every pair, p(C|wt) and p(C|Wj). This
is the most computationally demanding task and costs a to-
tal of O(mkl) operations. Generally, we have found that the
algorithm converges in 10-15 iterations independent of the
size of the data set. Thus the total complexity is O(mkl),
which grows linearly with m (note that k ¿ m). In contrast,
the agglomerative algorithm of [28] costs O(m3l) operations.

The algorithm in Figure 1 has certain pleasing proper-
ties. As we will prove in Theorem 3, our algorithm de-
creases the objective function value at every step and thus is
guaranteed to converge to a local minimum in a finite num-
ber of steps (note that finding the global minimum is NP-
complete[13]). Also, by Theorem 1 and (13) we see that our
algorithm minimizes the “within-cluster” Jensen-Shannon
divergence. It turns out that (see Theorem 4) that our
algorithm simultaneously maximizes the “between-cluster”
Jensen-Shannon divergence. Thus the different word clus-
ters produced by our algorithm are “maximally” far apart.

We now give formal statements of our results with proofs.

Lemma 2. Given probability distributions p1, . . . , pn, the
distribution that is closest (on average) in KL-divergence is
the mean probability distribution m, i.e., given any probabil-
ity distribution q,

X

i

πiKL(pi, q) ≥
X

i

πiKL(pi,m), (14)

where πi ≥ 0,
P
i πi = 1 and m =

P
i πipi.

Proof. Use the definition of KL-divergence to expand the
left-hand side(LHS) of (14) to get

X

i

πi
X

x

pi(x) (log pi(x)− log q(x)) .

Similarly the RHS of (14) equals

X

i

πi
X

x

pi(x) (log pi(x)− logm(x)) .



Subtracting the RHS from LHS leads to
X

i

πi
X

x

pi(x) (logm(x)− log q(x)) =

X

x

m(x) log
m(x)

q(x)
= KL(m, q).

The result follows since the KL-divergence is always non-
negative [6, Theorem 2.6.3]. tu

Theorem 2. The Algorithm in Figure 1 monotonically
decreases the value of the objective function given in (13).

Proof. Let W(i)
1 , . . . ,W(i)

k be the word clusters at itera-

tion i, and let p(C|W(i)
1 ), . . . , p(C|W(i)

k ) be the correspond-
ing cluster distributions. Then

Q({W(i)
j }kj=1) =

kX

j=1

X

wt∈W(i)
j

πtKL(p(C|wt), p(C|W(i)
j ))

≥
kX

j=1

X

wt∈W(i)
j

πtKL(p(C|wt), p(C|W(i)

j∗(wt)))

≥
kX

j=1

X

wt∈W(i+1)
j

πtKL(p(C|wt), p(C|W(i+1)
j ))

= Q({W(i+1)
j }kj=1)

where the first inequality is due to step 3 of the algorithm,
and the second inequality follows from step 2 and Lemma 2.
Note that if equality holds, i.e., if the objective function
value is equal at consecutive iterations, then step 4 termi-
nates the algorithm. tu

Theorem 3. The Algorithm in Figure 1 always converges
to a local minimum in a finite number of iterations.

Proof. The result follows since the algorithm monotoni-
cally decreases the objective function value, which is bounded
from below (by zero). tu

We now show that the total Jensen-Shannon divergence
(which is constant for a given set of probability distribu-
tions) can be written as the sum of two terms, one of which
is the objective function (13) that our algorithm minimizes.

Theorem 4. Let p1, . . . , pn be a set of probability distri-
butions and let π1, . . . , πn be corresponding scalars such that
πi ≥ 0,

P
i πi = 1. Suppose p1, . . . , pn are clustered into k

clusters P1, . . . ,Pk, and let mj be the (weighted) mean dis-
tribution of Pj , i.e.,

mj =
X

pt∈Pj

πt
π(Pj)

pt, where π(Pj) =
X

pt∈Pj
πt. (15)

Then the total JS-divergence between p1, . . . , pn can be ex-
pressed as the sum of “within-cluster JS-divergence” and
“between-cluster JS-divergence”, i.e.,

JSπ({pi : 1 ≤ i ≤ n}) =
kX

j=1

π(Pj)JSπ′({pt : pt ∈ Pj})

+JSπ′′({mi : 1 ≤ i ≤ k}),
where π′t = πt/π(Pj) and we use π′′ as the subscript in the
last term to denote π′′j = π(Pj).

Proof. By Lemma 1, the total JS-divergence may be writ-
ten as

JSπ({pi : 1 ≤ i ≤ n}) =

nX

i=1

πiKL(pi,m)

=
nX

i=1

X

x

πipi(x) log
pi(x)

m(x)
(16)

where m =
P
i πipi. With mj as in (15), and rewriting (16)

in order of the clusters Pj we get

kX

j=1

X

pt∈Pj

X

x

πtpt(x)

ţ
log

pt(x)

mj(x)
+ log

mj(x)

m(x)

ű

=

kX

j=1

π(Pj)
X

pt∈Pj

πt
π(Pj)

KL(pt,mj) +

kX

j=1

π(Pj)KL(mj ,m)

=
kX

j=1

π(Pj)JSπ′({pt : pt ∈ Pj}) + JSπ′′({mi : 1 ≤ i ≤ k}),

where π′′j = π(Pj), which proves the result. tu
This concludes our formal treatment. We now see how to

use word clusters in our text classifiers.

5.2 Classification using Word Clusters
The Naive Bayes method can be simply translated into us-

ing word clusters instead of words. This is done by estimat-
ing the new parameters p(Ws|ci) for word clusters similar
to the word parameters p(wt|ci) in (4) as

p(Ws|ci) =

P
dj∈ci n(Ws, dj)

Pk
s=1

P
dj∈ci n(Ws, dj)

where n(Ws, dj) =
P
wt∈Ws

n(wt, dj).

Note that when estimates of p(wt|ci) for individual words
are relatively poor, the corresponding word cluster param-
eters p(Ws|ci) provide more robust estimates resulting in
higher classification scores.

The Naive Bayes rule (5) for classifying a test document
d can be rewritten as

c∗(d) = argmaxci

Ã
log p(ci) +

kX

s=1

p(Ws|d) log p(Ws|ci)
!
,

where p(Ws|d) = n(Ws|d)/|d|. SVMs can be similarly used
with word clusters as features.

6. EXPERIMENTAL RESULTS
This section provides empirical evidence that our divisive

clustering algorithm of Figure 1 outperforms agglomerative
clustering and various feature selection methods. We com-
pare our results with feature selection by Information Gain
and Mutual Information[30], and feature clustering using the
agglomerative algorithm in [2]. We call the latter Agglomer-
ative Clustering in this section for the purpose of comparison
with our algorithm which we call Divisive Clustering. We
show that Divisive Clustering achieves higher classification
accuracy than the best performing feature selection method
when the training data is sparse and show improvements
over similar results reported in [28].
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Figure 2: Fraction of Mutual Information lost while
clustering words with Divisive Clustering is signifi-
cantly lower compared to Agglomerative Clustering
at all number of features (on 20 Newsgroups data).

6.1 Data Sets and Implementation Details
The 20 Newsgroups (20Ng) data set, collected by Ken

Lang, contains about 20,000 articles evenly divided among
20 UseNet Discussion groups. Each newsgroup represents
one class in the classification task. This data set has been
used for testing several text classification methods[2, 28, 21].
During indexing we skipped headers, pruned words occur-
ring in less than 3 documents and used a stop list but did not
use stemming. The resulting vocabulary had 35,077 words.

We collected the Dmoz data from the Open Directory
Project (www.dmoz.org). The dmoz hierarchy contains about
3 million documents and 300,0000 classes. We chose the top
Science category and crawled some of the heavily populated
internal nodes beneath it resulting in a 3-deep hierarchy with
49 leaf level nodes and about 5,000 total documents. For
our experimental results we ignored documents at internal
nodes. The list of categories and urls we used is available at
www.cs.utexas.edu/users/manyam/dmoz.txt. While indexing
we skipped text between html tags, pruned words occurring
in less than five documents, used a stop list but did not use
stemming. The resulting vocabulary had 14,538 words.

Bow[22] is a library of C code useful for writing text analy-
sis, language modeling and information retrieval programs.
We extended Bow to index BdB (www.sleepycat.com) flat
file databases where we stored the text documents for effi-
cient retrieval and storage. We implemented Agglomerative
and Divisive Clustering within Bow, and used Bow’s SVM
implementation in our experiments.

6.2 Results
We first give evidence of the improved quality of word

clusters obtained by our algorithm as compared to the ag-
glomerative approach. We define the fraction of mutual in-
formation lost due to clustering words as:

I(C;W )− I(C;WC)

I(C;W )
.

Intuitively, lower the loss in mutual information the bet-
ter is the clustering. The term I(C;W ) − I(C;WC) in the
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Figure 3: Fraction of Mutual Information lost while
clustering words with Divisive Clustering is signifi-
cantly lower compared to Agglomerative Clustering
at all number of features (on Dmoz data).

numerator of the above equation is precisely the global ob-
jective function that Divisive Clustering attempts to mini-
mize (see Theorem 1). Figures 2 and 3 plot the fraction of
mutual information lost against the number of clusters for
both the divisive and agglomerative algorithms on the 20Ng
and Dmoz data sets. Notice that less mutual information
is lost with Divisive Clustering compared to Agglomerative
Clustering at all number of clusters, though the difference
is more pronounced at lower number of clusters.

Next we provide anecdotal evidence that our word clusters
are better at preserving class information as compared to the
agglomerative approach. Figure 4 shows three word clusters,
Cluster 9 and Cluster 10 from Divisive Clustering and Clus-
ter 12 from Agglomerative Clustering. These clusters were
obtained while forming 20 word clusters with a 1/3-2/3 test-
train split. While the clusters obtained by our algorithm
could successfully distinguish between rec.sport.hockey and
rec.sport.baseball , Agglomerative Clustering combined words
from both classes in a single cluster. This resulted in lower
classification accuracy for both classes with Agglomerative
Clustering compared to Divisive Clustering. While Divisive
Clustering achieved 93.33% and 94.07% on rec.sport.hockey
and rec.sport.baseball respectively, Agglomerative Clustering
could only achieve 76.97% and 52.42%.

6.2.1 Classification Results on 20 Newsgroups data
Figure 5 shows classification accuracies on the 20 News-

groups data set for the algorithms considered. The hori-
zontal axis indicates the number of features/clusters used in
the classification model while the vertical axis indicates the
percentage of test documents that were classified correctly.
The results are averages of 5-10 trials of randomized 1/3-2/3
test-train splits of the total data. Note that we cluster only
the words belonging to the documents in the training set. We
used two classification techniques, SVMs and Naive Bayes
(NB) for the purpose of comparison. Observe that Divisive
Clustering (SVM as well as NB) achieves significantly bet-
ter results at lower number of features than feature selection
using Information Gain and Mutual Information. With only
50 clusters, Divisive Clustering (NB) achieves 78.05% accu-
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Figure 4: Top few words sorted by Mutual Informa-
tion in Clusters obtained by Divisive and Agglom-
erative approaches on 20 Newsgroups data.
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Figure 5: Classification Accuracy on 20 Newsgroups
data with 1/3-2/3 test-train split.

racy — just 4.1% short of the accuracy achieved by a full
feature NB classifier. We also observed that the largest gain
occurs when the number of clusters equals the number of
classes (for 20Ng data this occurs at 20 clusters). When we
closely observed these word clusters we found that many of
them contained words representing a single class in the data
set, for example see Figure 4. We attribute this observation
to our effective initialization strategy.

In Figure 6, we plot the classification accuracy on 20Ng
data using Naive Bayes when the training data is sparse.
We took 2% of the available data, that is 20 documents per
class, for training and tested on the remaining 98% of the
documents. The results are averages of 5-10 trials. We again
observe that Divisive Clustering obtains better results than
Information Gain at all number of features. It also achieves
a significant 12% increase over the maximum possible accu-
racy achieved by Information Gain. This is in contrast to
Figure 5 where Information Gain eventually catches up as
we increase the number of features. When the training data
is small the word by class frequency matrix contains many
zero entries. By clustering words we obtain more robust
estimates of word class probabilities which lead to higher
classification accuracies.
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Figure 6: Classification Accuracy on 20 Newsgroups
data with 2% Training data (using Naive Bayes).
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Figure 7: Divisive Clustering leads to higher accu-
racy than Agglomerative Clustering on 20 Ng data
(1/3-2/3 test-train split with Naive Bayes).
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Figure 9: Classification Accuracy on Dmoz data
with 2% Training data (using Naive Bayes).
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Figure 10: Divisive Clustering achieves higher accu-
racy than Agglomerative Clustering on Dmoz data
(1/3-2/3 test-train split with Naive Bayes).

Figure 7 compares the classification accuracies of Divisive
Clustering and Agglomerative Clustering on the 20 News-
groups data using Naive Bayes. Note that Divisive Cluster-
ing achieves better classification results than Agglomerative
Clustering at all number of features, though again the im-
provements are more significant at lower number of features.

6.2.2 Classification Results on Dmoz data set
Figure 8 shows classification results for the Dmoz data set

when we build a flat classifier over the leaf set of classes.
Unlike the previous plots, feature selection sometimes im-
proves classification accuracy since HTML data appears to
be inherently noisy. We observe results similar to those ob-
tained on 20 Newsgroups data, but note that Information
Gain(NB) here achieves a slightly higher maximum, about
1.5% higher than the maximum accuracy observed with Di-
visive Clustering(NB). To overcome this, Baker and McCal-
lum[2] tried a combination of feature-clustering and feature-
selection methods. More rigorous approaches to this prob-
lem are a topic of future work. Further note that SVMs fare
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Figure 11: Classification results on Dmoz hierarchy
using Naive Bayes. Observe that the Hierarchical
Classifier achieves significant improvements over the
Flat classifiers with very few number of features.

worse than NB at low dimensionality but better at higher
dimensionality, which is consistent with known SVM behav-
ior [29]. In future work we will use non-linear SVMs at lower
dimensions to alleviate this problem.

Figure 9 plots the classification accuracy on Dmoz data
using Naive Bayes when the training set is just 2%. Note
again that we achieve a 13% increase in classification ac-
curacy with Divisive Clustering over the maximum possi-
ble with Information Gain. This reiterates the observation
that feature clustering is an attractive option when training
data is limited. Figure 10 compares Divisive Clustering with
Agglomerative Clustering on Dmoz data where we observe
similar improvements as with 20 Newsgroups data.

6.2.3 Hierarchical Classification on Dmoz Hierarchy
Figure 11 shows classification accuracies obtained by 3

different classifiers on Dmoz data (Naive Bayes was the un-
derlying classifier). By Flat, we mean a classifier built over
the leaf set of classes in the tree. In contrast, Hierarchical
denotes a hierarchical scheme that builds a classifier at each
internal node of the topic hierarchy (see Section 4.3). Fur-
ther we apply Divisive Clustering at each internal node to
reduce the number of features in the classification model at
that node. The number of word clusters is the same at each
internal node.

Figure 11 compares the Hierarchical Classifier with two
flat classifiers, one that employs Information Gain for fea-
ture selection while the other uses Divisive Clustering. Note
that Divisive Clustering performs remarkably well for Hi-
erarchical Classification even at very low number of fea-
tures. With just 10 features, Hierarchical Classifier achieves
64.54% accuracy, which is slightly better than the maximum
obtained by the two flat classifiers at any number of features.
At 50 features, Hierarchical Classifier achieves 68.42%, a sig-
nificant 6% higher than the maximum obtained by the flat



classifiers. Thus Divisive Clustering appears to be a natural
choice for feature reduction in case of hierarchical classifica-
tion as it allows us to maintain high classification accuracies
using very small number of features.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented an information-theoretic

approach to “hard” word clustering for text classification.
First, we derived a global objective function that captures
the decrease in mutual information due to clustering. Then
we presented a divisive algorithm that directly minimizes
this objective function, converging to a local minimum. Our
algorithm minimizes the within-cluster Jensen-Shannon di-
vergence, and simultaneously maximizes the between-cluster
Jensen-Shannon divergence.

Finally, we provided an empirical validation of the effec-
tiveness of our word clustering. We have shown that our
divisive clustering algorithm obtains superior word clusters
than the agglomerative strategies proposed previously[2, 28].
We have presented detailed experiments using the Naive
Bayes and SVM classifiers on the 20 Newsgroups and Dmoz
data sets. Our enhanced word clustering results in sig-
nificant improvements in classification accuracies especially
at lower number of features. When the training data is
sparse, feature clustering achieves higher classification accu-
racy than the maximum accuracy achieved by feature selec-
tion methods such as information gain and mutual informa-
tion. Our divisive clustering method is an effective technique
for reducing the model complexity of a hierarchical classifier.

In future work we intend to conduct experiments at a
larger scale on hierarchical web data to evaluate the effec-
tiveness of the resulting hierarchical classifier. Reducing the
number of features makes it feasible to run computation-
ally expensive classifiers such as SVMs on large collections.
While soft clustering increases the model size, it is not clear
how it affects classification accuracy. In future work, we
would like to experimentally evaluate the tradeoff between
soft and hard clustering.
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