Engineering Optimization with Particle Swarm

Xiaohui Hu -2

Russell C. Eberhart?

Yuhui Shi®

' Departiment of Biomedical Fngineering
Purdue University, West Lafayette, Indiana, USA

hux@ecn.purdue.edu

7 Depariment of Electrical and Computer Engineering
Purdue School of Engineering and Technology, Indianapolis, indiana, USA
reberbar@iupni.edu

* EDS Embeded Systems Group
Kokomo, Indiana, USA
Yuhui.Shi@eds.com

Abstract- This paper presents a modified particle
swarm optimization (PSO)} algorithm for engineering
optimization problems with constraints. PSO is started
with a group of feasible solutions and a feasibility
function is used te check if the newly explored solutions
satisfy all the constraints. All the particles keep only those
feasible solutions in their memory. Several engineering
design optimization problems were tested and the results
show that PSO is an efficient and general approach to
solve most nonlinear optimization problems with inequity
constraints.

1. INTRODUCTION

One of the most difficult parts encoutered in practical
engineering design optimizations is constraint handling.
Real-world limitations frequently introduce multipte, non-
linear and non-trivial contraints on a design. Constraints often
limit the feasible solutions to a small subset of the design
space. A general engineering optimization problem can be
defined as follows:

Minimize f{X}, X ={x, 5.5} eR

subjectto g(X)<0, i=12..p

and A(X)=0, i=12..,m

where " <x<x i=12_ .2

Due to the complexity and unpredictability of constaints, a
general deterministic selution is hard to find. In recent years,
several evolutionary algorithms have been proposed for
constrained engineering optimization problems {1]. Different
kinds of methods were proposed for handling constraints,
which is the key point of the optimization process [2]. Here a
new kind of particle swarm optimization (PSO) algorithm is
developed to solve the nonlinear engineering optimization
problems with constraints.

1t. PARTICLE SWARM

Particle swarm optimization (PSO) is a population based
stochastic optimization technique developed by Kennedy and
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Eberhart [3,4]. It exhibits some evolutionary computation
attributes: 1. It is initialized with a population of random
solutions. 2. It searches for optima by updating generations. 3.
Updating is based on previous generations. In PSO, the
potential solutions, called particles, fly through the problem
space by following the current optimum particles.

The updates of the particles are accomplished according to
the foilowing equations. Equation (1) calculates a new
velocity for each particle (potential solution) based on its

previous velocity (¥, ), the particle’s location at which the
best fitness has been achieved ( p, , or pBest) so far, and the

best particle among the neighbors ( p,, , or nBest) at which

the best fitness has been achieved so far. Equation (2) updates
each particle’s position in the solution hyperspace. The two
random numbers { rand() and Rand() ) are independently

generated, and ¢, and ¢, are leaming factors, The use of the

inertia weight w has provided improved performance in a
number of applications [5].

|4

w =wxV, +e xrand()x(p, —x, )+ ¢, xRand(Yx(p,, —x,) (1

2)

Xy =X+
M1, CONSTRAINT HANDLING

There are some studies reported in the literature that
extended PSO to constrained optimization problems. Various
constraint handling techniques were employed to facilitate
the optimization process.

Parsopoulos et al 6] converted the constrained
opiimization problem into a non-constrained optimization
problem by adopting a non-stationary multi-stage assighment
penalty function and then applying PSO to the converted
problems. Several benchmark problems are tested and the
author claimed it outperformed other different evolutionary



algorithms, such as Evolution Strategies and Genetic
Algorithms.

Ray er al. [7] employed a Pareto ranking scheme to handle
constraints, which is a concept in multiobjective optimization
scenarios. The authors proposed a swarm metaphor with a
multilevel information sharing strategy. In 2 swarm, there are
some better performers (leaders) that set the direction of
search for the rest of the individuals. An individual that is not
in the better performer list (BPL) improves its performance
by deriving information from its closest neighbor in BPL.
The constraints are handled by a constraint matrix. A
multileve] Pareto ranking scheme is implemented to generate
the BPL based on the constraint matrix. H should be noted
that the updates of particles use a simple generational
operator instead of the regular PSO update formuia. The
simulation on test cases showed much faster convergence and
much less time for function evaluations.

Here, a simple but effective method is introduced to solve
constrained optimization problems [8]. The preserving
feasibility strategy is employed to deal with constraints. Two
modifications were made to PSQ algorithms. }. When
updating the memorics (pBest and nBesr), all the particles
only keep feasible solutions in their memory, 2. During the
initialization process, alt particles are started with feasible
solutions. The algorithm can be stated as follows:

For each particle {

REPEAT initialize particle until it satisfies all the constraints
\
]

Do {

For each particle {
Calculate fitness value
If the fitness value is better than the best fitness value (pBest)
in history AND the particle is in the feasible space

set current value as the new pBest

1

Ll

For each particle {
Choose the particle with the best pBesi value among all the
neighbors as the nBest
Calculate particie velocity according equation (1)
Update particle position according equation (2)

3

} While maximum iterations or minimum criteria is not attained

Figure 1: Modified PSO algorithm

Compared to other constraint handling techniques, this
approach has the following advantages:

1. It is simple. There is no preprocessing to the
constraints and there is no complicated manipulation,
cither. Fitness function and constraints are handled
seperatedly, thus there are no limitaions to the
constraints.

2. Itis faster. The only part of the algorithm dealing with
contraints is to check if a solution satisfies all the
consiraints. This will reduce the computation time
when handling multiple or complicated constraints.
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IV. EXPERIMENTS AND RESULTS ANAYLSIS

Several examples takne from the optimization literature are
used to demonstrate the perfromance of the proposed
approach. These examples have linear or non-linear
constraints and have been solved using a variety of other
techniques [9-13].

In all the experiments, the population size is 20, and the
maximum generations is 10,000. Since the particles will be
repeatedly intialized until they meet all the constraints. A
small population size is preferred, espicially when there is a
smaller feasible space. There are two versions of PSO
algorithm, local version and global version. The global
version is faster while the local version is better in avoiding
local optima [3]. Here a local version is used with the
neighborhood size set to three. The other parameters are set
as follows: the inertia weight is [0.5 + (Rnd/2.0)]; the
learning rates are 1.49445; the maximum velocity ¥,,,, was

set to the dynamic range of the particle on each dimension
[14].

A. Design of a Pressure Vessel

The objective of the problem is to minimize the total cost
of the material, forming and welding of a cylindrical vessel.
There are four design variables: x, (T, thickness of the shell)
x, (T, thickness of the head), x. (R, inner radius) and », (L,
length of the cylindrical section of the vessel), T, and T,, are
integer multiples of 0.0625 inch, which are the available
thicknesses of rolled steel plates, R and L are continuous. The
problem can be specified as follows:
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Minimize
J(X)= 0.6224xl.\'3.r4 + }.7781.\'2;3 + 3-‘66],1-]2,\-4 + 19.84.1"2:(]
Subject to
2{X)=-x,+00193x, <0
£:(X)= -x, +0.00954x, < 0

g(X)=—mlx, —%mc: +1296000< 0
2{X)=x,-240<0

The following ranges of the variables were used {9):

1€x£99, 1<x,<99, 100<x, £2000, 10.0<x,<200.0

In PSO, each parameter is coded independently. When
dealing with integers, the velocity and position of particles in
dimension x, and x, are truncated to integers.

In order to compare the results, eleven runs were executed
{9). The best solution found by PSO is better than any solution
previously reported in the literature as shown in Table 1. The
worst solution found by PSO is 6632.5. It seems that the PSO
is not stable, and the possible reason is the integer
variable. When the velocities are limited to integer values,



particles are easily trapped into local optima and fail to
explore new areas. Further investigation is needed to solve
this issue.

Table 1. Comparison ol the results for pressure vessel design problem

Design Best solutions found

Vanables This paper Coelle [9] GeneAS [11])
ETV) 08125 0.8125 0.9375
xi7,) 0.4375 0.4375 0.5000
xdR) 42.09845 400.3239 48.3290
x,(L) 176.6366 200.0000 112.6790
g,(x) 0.0 -0.034324 -0.004750
£ X} -0.03588 -0.052847 -0.038941
gl X} -5.8208E-11 -27.105845 -3652.876838
24(X) -63.3634 -40.00900 -127.321000
f1X) 6059.1312%6 6288.7445 6410.3811

B. Welded Beam Design

The objective is to minimize the cost of a welded beam
subject to constraints on shear stress, bending stress in the
beam, bucking load on the bar, end deflection of the beam,
and side constraints, The problem can be stated as follows:

Minimize f(X)= 1.10471xix, +0.04811x,x,(14.0+ x,)
Subject to

g(X)y=r(X)-71,,, <0

X)) =o(X)-0,,, <0

&{X)=x—-x,50

2,(X)=0.10471x7 + 0.0481 1x,x,(14.0+ x,) - 5.0< 0

£(X)=0.125-x,<0

g(X)=8(X) -6, <0

&(X)=P-F(X)=0

where
(X)= J(r')2 + 2r'r";—; +(r")?
P MR
r's————, "= M= P(L+22)
\/Ex‘xz 2

=)

2 2
J=2 \/Ex,x2 ic_;+(____x,+x3j

2
6PL 4pr}
o(X)=—, (X)=—
aX3 Exyx,
2_6
4.01351/"%/
P(X)= /36, _ % /_E.,
I 2LV 4G

P=6000/b, L=I14in, E=30x10°psi
G=12x10%psi, 1, =13600psi
O = 30000psi, & =0.25n

max

The following ranges for the variables were used:
0.1<x €20, 0.1<x, <100, 01<x, <100, 0.1<x, <20

Eleven runs were executed. PSO found the same solution in
all runs. The result is better than any other solutions
previously reported as shown in Table 2.

Table 2: Comparison of the results for the welded beam desisgn problem

Design Best solutions found

Variables This paper Coello {9] Deb [12)
x{h) 0.20573 0.2088 0.2489
x50 3.47049 3.4205 6.1730
X1} 9.03662 8.9975 8.1739
x5 0.20573 0.2100 0.2533
g(X) 0.0 0.337812 -3758.603777
2,(X) 0.0 -353.902604 -255.516501
£2:(X) -5.5511151E-17 -0.00120 -0.004400
£.(X) -3.432983785 -3.411865 -2.982866
&(X) -0.0807296 -0.08380 -0.123900
24(X) -0.2355403 -0.235649 -0.234160
£,{X) -9.094947E-13 -363.232384 -4465.270928
FX) 1.72485084 1.74830941 2.43311600

C.  Minimization of the Weight of a Tension/Compression
Spring

The problem consists of minimizing the weight of a
tension/compression spring subject to constraints on
minimum deflection, shear stress, surge frequency, limits on
outside diameter and on design variables. The design
variables are the mean coil diameter D, the wire diameter d
and the number of active coils N. The problem can be
expressed as follows:

Minimize F(X)= (N +2)Dd’

Subject to
g,(X):l—%sO
&%= 125:?(;:1?'?&‘) M I0]8d1 -l=0
g(X)=1- MDO;";" <0
£(X) = D:Sd—lso

The following ranges for the variables were used:
0.05<x €20, 025€x,51.3, 205x,<150
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The mean value from 11 runs was f{X)=0.012718975 with

a standard deviation of 6.446x10™*. The best solution is better
than previously reported results in the literature,

Table 3: Comparison of the results for the minimization of the weight of a
tension/compression spring

Design Best solutions found

Variables This paper Coelto [9] Arora [13]
xid) 0.051466369 0.051430 .053396
X (D) 0.351383949 0351661 0.399180
(N 11.60865920 11.632201 9.185400
g1t X) -0.003336613 -0.002080 0.000019
£,0X) -1.0970128E4 -0.000110 -0.000018
g:(X} -4.0263180998 -4.026318 -4.123842
244X -0.7312393333 -0.731239 -0.698283
i) 0.0126661409 0.0127047834 0.127302737

D. Himmelblau's Nonlinear Optimization Problem

This problem was proposed by Himmelblan and it has
been used before as a benchmark for several evolutionary
algorithm based techngies. In this problem, there are five
design variables, six nonlinear inqueality constraints and ten
boundary conditions. The problem can be stated as follows:

Minimize FX) = 5.3578547x7 +0.835689 Lx,x,

+37.2932239x, — 40792.141
Subject to
0 < 85.334407 + {.0056858x x, + 0.00026x,x, — 0.0022053x,x, < 92
90 5 80.51249+ 0.0071317x,x, +0,0029955x,x, +0.0021813x? <110
20930096 1+ 0.0047026x,x, + 0.0012547x, x, +0.0019085x,x, <25
where
78=x,2102, 33<x,<45 27<x,<45
2T£x, €45, 27<x <45

Table 4: Comparison of the results for the Himmelbiau nonlinear
optimization problem

Design Best solutions found
Variables This paper Coello [9] Homaitar [10]

x 78.0 78.0495 78.0000
X, 33.0 33.0070 33.0000
x 27.070997 27.0810 29.9950
EA 450 45.0000 45.0000
X 4496924255 44.9400 36.7760

g(Xx) 92.0 91.997635 90.714681

£2{X) 100.4047843 100.407857 98.840511

g2:(X) 20.0 20.008911 19.999935

JxN -31025.56142 -31020.859 -30665.609

PSO found the best solution in eleven runs without
execption. The result is listed in Table 4. It should be noted
that Koziel and Michalewicz [2] listed a similar test case
which is slightly different than the one listed here. The
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second coefficient in the first constraint is 0.0006262 instead
of 0.00026. In that case, the optimal solution is known to be
minus 30665.5398 [2,8].

The above experiments showed that the proposed PSO
atgorithm js an effective method for handling constraints.
However, it should be noted the it requires a group of feasible
solutions te start the search. In some problems the feasibie
spaces are extremely small and it is hard to find a group of
feasible solutions. The following experiments were designed
to investigate the cost of initahzation. The first experiments
were (o0 check the size of the feasible space. 100,000
solutions were randomly generated, and the number of
feasible solutions were counted. The percentages of feasible
sohstions are listed in the second column (x) of Table 5. The
second experiment was to check the average trials needed 1o
get feasible solutions. Random solutions were repeatedly
generations until 100,000 feasible solutions were found and
the total number of random solutions needed was counted.
The average trials needed to get a feasible solution are listed
in the fouth column (y) of Table 5. It is showed that the two
groups of numbers are reciprocal to each other.

Altough extra loops are needed to find feasible solutions,
the time complexity is not high as expected. A feasible
solution has to satisfy all the constraints. Once a constriant is
not satisfted, it is not necessary to test other constraints. Thus
the overall time complexity is not proportional to the number
of loops needed and the computation time will be much lower.

Table 5: Percentage of feasible solutions {x) v. 5. mean trials need to get
a good solution {y)

X 1/x v
A 39.76% 2.515 2.5177
B 2.707% 36.94 37.505
C 0.78% 128.2 133.61
3] 51.827% 1.929 1.9200

Vi. CONCLUSIONS

h is well known that practical engineering optimization
envolves multiple, non-linear and non-trivial constaints due
to real world limitations. From an engineering standpoint, a
better, faster, cheaper solution is always desired.

Compared with other methods, PSO has the following
advantages:

s Faster. PS5O can get the same quality results in
significantly fewer fitness evaluations and constraint
evaluations.

s Better. From democnstration, PSO found better results
than others reported in the literature.

s  Cheaper. The algorithm is intuitive and does not need
specific domain knowledge to solve the problem. There
is no transformation or any other manipulations needed



to handle the constraints. Furthermore, there is no need
to adjust parameter settings for different problems.

However, there are still some limmtations to the application
of PSO to engineering problems. First, due to the random
origin of evolutionary algorithms, it is difficult to deal with
equity constraints. It is almost impossible to find a group of
initial solutions in the feasible space. This also applies to
those problems with extremely small feasible space. Second,
for some engineering optimization probiems involving
integer variables, the algorithm is not stable occasionally and
can be trapped in local minima . Further investigation is
needed to improve PSO’s performance in solving those types
of problems.
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