Particle Swarm with Extended Memory for Multiobjective Optimization
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Abstract: This paper presents a modified dvnamic
neighborhood Particle Swarm  Optimization (DN-PSO)
algorithm for multiobjective optimization problems. PSO is
modified by wusing a dypamic neighborhood strategy, new
particle memory updating, and one-dimension optimization to
deal with multiple objectives. An extended memory is
introduced to store global Pareto optimal solutions te reduce
computation time. Several benchmark cases were tested and the
results show that the modified DNPSO is much more efficient
than the original DNPSO and oiher multiobjective optimization
techniques.

1. INTRODUCTION

Multicbjective optimization {MO) i1s an important research
topic for both scientists and engineers. Traditional
optimization techniques such as gradient-based methods are
difficult, if not impossible, to extend to true MO problems.
Evolutionary computation algorithms deal with a population
of candidate solutions. It seems natural to apply evolutionary
computation algorithms to MO problems to find a group of
Pareto optimal solutions simultaneously. In the past several
years, many evolutionary algorithm based multiobjective
optimization (MOEA) methods have been suggested and
developed {1-3].

General MO problems can be defined in the following
format:

Optimize f(%) = [f, (), (D). £ (D]
subjectto g {X)<0 for j=1..p
and h;(X)=0 for j=p+l..m

where X = (x,,x,..x,} € R"

The family of optimal solutions of this MO problem is
composed of all those potential solutions such that the
components of the corresponding objective vectors cannot be
simultaneously improved. This is known as the concept of
Pareto optimality. In a minimization problem, Pareto
dominance and Pareto optimality are defined as follows [1]:
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Definition 1 (Pareto Dominance): A given veclor

X=(x,,x;,+,x,) is said to dominate

X'=(x',,x";,---,x' ) ifand only if

Vie{l,2,--n},x, <x'; and Fi € {l,2,---n},x; < x';

Definition 2 (Pareto Optimality): For a general MO

problem, a given solution f* € F (where F is the feasible
solution space) is Pareto optimal if and only if there is no

)7' € F' that dominates ]7 *,

In other words, this definition of Pareto optimality says

that f* is Pareto optimai if there is no feasible vector
p

that would decrease some objective value without causing a
simultaneous increase in at least one other objective value [3].
The Pareto optimum usually provides a group of solutions
called non-inferior or non-dominated solutions instead of a
single solution.

Definition 3 (Pareto front): the solutions which are Pareto
optimal comprise the Pareto front.

1. PSO AND MO-PSO

As a new optimization method, particle swarm
optimization (PSQ) has been demonstrated 1o be an effective
optimization tool in many areas {4, 5]. However, the
application of PSO for solving multiobjective optimization
problems (MO-PSO) is still under development. This paper
reviews the current development of MO-PSO and proposes a
new approach to multiobjective optimization using PSO.

Particle swarm optimization (PSO) is a population-based
stochastic optimization technique originally developed by
Kennedy and Eberhart [6, 71. It is similar to evolutionary
computation techniques in that: 1. It is initialized with a
population of random solutions; 2. It searches for the
optimum over generations; 3. Reproduction is based on the
prior generations. The key point in PSO is that each potential

193



solution, called a particle, "randomly" searches through the
problem space by updating itself with its ewn memory and
social information gathered from the other particles.

The updates of the particles are accomplished according to
the following equations. Equation (1} calculates a new
velocity for each particle (potential solution) based on its

previous velocity { ¥,), the particle’s location ai which the
best fitness has been achieved ( p,, , or pBest) so far, and the

best particle location among the neighbors { p,, , or nBes/) at

which the best fitness has been achieved so far. Equation (2)
updates each particle’s position in the solution hyperspace.
The two random numbers rand() and Rand{) are

independently generated, while ¢, and ¢, are two leaming

factors. The use of the inertia weight w has provided
improved performance in 2 number of applications [8].

V,=wx¥, +c xrand)(p,—x )+ xRan@x(p,,—x,;) ()
X=X+, e

In order to handle multiple objectives, PSO must be
modified before being applied to MO problems. There are
some studies reported in the literature that extend PSO to MO
problems [9-13). Due to the similarity of particle swarm and
other  evolutionary  computation  methods, many
multiobjective handling techniques can be adopted to the
modified PSO.

In most approaches, the major modifications of the PSO
algirithm are the selection process of nBesr and pBest.

Coello Coello ef al. [9] developed a grid-based nBest
slection process. He exployed a second population called a
“repository” to store all the non-dominated solutions. The
nBest is determined by choosing a non-dominant solution
from the repository. In order to get better distribution and
provent clustering, roulette-wheel selection is uvsed to select
one of the hypercubes from which the nbest will be randomly
picked. The aim is to distribute the non-dominant solutions
evenly among all the hypercubes. The selection of pBest is
relatively easy, which i1s only updated according to the Pareto
Dominance.

Parsopoulus et al. [11] tested a different strategy by using
multiple populations to handle multiple objectives. It is called
a vector evaluated particle swarm, which adopted the idea
from vector evaluated genetic algorithms. Two swarms are
used to solve a two-objeciive optimization problem; each
swarm is evaluated according to one of the objectives. When
one swarm updates the velocities of the particles, the other
swarm is used to find the best particle to follow. Both
methods show promising results. However a quantitative
analysis of the performance was not reported

HIL. DYNAMIC NEIGHBORHOOD PSO WITH
EXTENDED MEMORY

In a previous paper [10], a dynamic neighborhood particle
swarm  optimization  algorithm  for  multiobjective
optimizalion problems was introduced. Compared 1o the
traditional PSO, following are the modifications in the
DNPSO.

e The selection of nBest; first calculate the distances of
the current particle from other particles in terms of Fl
values (the muitiple objectives are divided into two
groups: F1 and F2. Fl is defined as neighborhood
objective, F2 is defined as optimization objective, and
the selections of F1 and F2 are arbitrary), then find the
nearest m particles as the neighbors of the curent
particie based on the distances calculated above (m is
the neighborhood size); finally find the nBest among
the neighbors in terms of the F2 values.

o The update of pBest. pBest is the best position in a
particle’s history. Only when a new solution
dominates the current pBest, is the pBest updated.

In the preliminary research of this approach, it was showed
that DNPSO is a promising method. This paper is an
extension to the previous paper. An important modification is
made to significantly decrease the computation time. An
extended memory i1s added to the DNPSO to memorize all
potential Pareto optimal solutions.

Figure 1 shows the possible flying directions of a particle
in a two-objective minimization scenario. Using the cumrent
particle as the origin, the hyperspace can be divided into four
regions. All sojutions in region 1 dominate the current particle
and all solutions in region IIl are dominated by current
particte. The solutions in region I1 and IV are potential Pareto
optimal solutions but do not dominate current solution.
However, in the original DNPSO, the pBest is only updated
when a new solution dominates the current pBest. The
strategy might lose many potential good solutions in region Il
and region IV. Those solutions do not dominate the current
particle, but they might dominate other particles. If those
solutions are well utilized, it will significantly reduce the
computation time. Thus an extended memory is introduced to
store all the Pareto optimal solutions in the current generation.
The selection process of nbest is same as that in DNPSQ, but
the candidate pocl is the extended memory instead of all the
pBests of particles. This extended memory is similar to the
concept of a repository proposed by Coello Coello and
Fieldsend [9].

>
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’ Figure |: Possible flying directions of a panicle

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Zitzler er al. {14} proposed a group of benchmark test
problems to compare evolutionary multiobjective approaches.
Each of the test functions defined below is structured in the
same manner and consists of three functions ), g, and h.

Minimize 1(¥) = (f,(x,), /(%))

Subjectto fL(¥) = gl(xy,..,x, }- 1 fi{x), g(xs,....,x, )}

Where x ={x,..,x,)

Here test functions T1, T2, T3, T4, and Té were used to
test the performance of DNPSO. TS was not tested because it
is a binary string problem, which can not be handled by the

current version of DNPSO, For detailed information about
the functions please refer to the original paper [14].

In order to compare with other results, the same settings
are used (the maximum iteration number was sct to 250)
however the population size was reduced to 20 due to the
improved performance. For each test function, 30 runs were
executed. The other parameters of PSO were set as follows:
the inertia weight was [0.5 + (Rnd/2.0)]; the learning rates
were 1.49445; the maximum velocity V,,,, was set to the
dynamic range of the particle on each dimension. The size of
the extended memory is 200 and the neighbor size is set to 10,
which means every time nBest will be selected from the 10
nearest Pareto optimal solutions in the 200-solution pool.

TABLE 1: NUMBER GF FITNESS EVALUATIONS OF DIFFERENT ALGORITHMS

SPEA DNPSO m-DNPSOQ
Population 100 100 20
Generations 250 250 250
Fitness
evaluations 25000 25000 5000

To compare the results, the outcomes of the 30 runs were
unified, and then the dominated solutions were removed from
the union set. The simulation results of Strength Pareto
Evolutionary Algorithm (SPEA) [15] were downloaded from
http.//www.tik.ce.ethz.ch/~zitzler/testdata.html [14]. DNPSO
is the original dynamic neighbor PSQ [10], and m-DNPSO is
the modified DNPSO proposed in previous section. Figures
2-6 show the graphic results of the simulations.
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The goal of most evolutionary based optimization

techniques is to get better results faster and cheaper. However,
in multiobjective optimization, the definition of better results
is more complicated. In general, the following creteria should
be considered [14]:

1. The distance of the resulting non-dominated solution
" set 1o the Pareto front should be minimized.
2. A good (in most cases uniform) distribution of the
resulting non-dominated solution set should occur.
3. A wide range of the Pareto front should be covered by
the resulting non-dominated solutions set.

Quantitative metrics that formalize the above creteria are
still under development. From Figures 2-6, it can be shown
that the m-DNPSO can cover the majority of the Pareto Front
and the distribution is satisfactory in test functions T1, T2 T3
and T6. Here another two quantitative methods are wvsed to
compare the performace: the number of non-dominated
solutions and the C metric.

The C metric is defined as follows [14]:

Definition 4 (C Metric): Let X', X" X be two sets of
decision vectors, the function C maps the ordered pair
(X', X")tothe interval [0, 1]

' la"e X" Jda'e X:a'< a"|
C(X",A")=
X!

The value C ( X', X™) = | means that all solutions in X"
are dominated by or equal to solutions in X'. While, the
value C (X', X") = 0 means none of the solutions in X™
are covered by the set X',

Table 2 shows the number of non-dominated solutions
obtained by SPEA, DNPS0 and m-DNPSO. From Table 2, it
can be seen that m-DNPSO gets many more non-dominated
solutions in a significantly fewer fitness evaluations for
functions T}, T2, T3 and T6. Tables 3 and 4 show the C
Metric among the different algorithins. They clearly show
that almost all of solutions found by m-DNPSQO are better
than that in DNPSQ and SPEA for functions T1, T2, T3, and

T6. However, for function T4, neither m-DNPSO nor
DNPSO got better resuls.

TABLE 2: NUMBER OF NON-DOMINATED SOLUTIONS FOUND IN 30 RUNS.

Functlion SPEA DNPSO m-DNPSO
T 204 925 1293
T2 112 424 515
T3 202 436 825
T4 156 6 2
T6 22 1847 5998

TABLE 3: € METRIC OF M-DNPSOPSO AND DNPSO

Function C (DNPSO. m-DNPSOQ) C{m-DNPSO, DNPSO)
Ti 0.0 1.0
T2 0.014 1.0
T3 0.004 1.0
T4 0.0 1.0
T6 0.0 1.0

TABLE 4: C METRIC OF M-DNPSOPSO AND SPEA

Function | € (SPEA, m-DNPSO) Cim-DNPSO, SPRA)
T 0.0 1.0
T2 0.0 10
T3 00 0.980
T4 10 0.0 ]
76 0.0 1.0

V. CONCLUSION

This paper presents a modificd dynamic neighborhood
particle swarm optimization algorithm for multiobjective
optimization problems. Compared to the traditional PSQO,
there are following modifications in the m-DNPSO.

» The update of pBest: pBest is the best position in a
particle’s history.  Only when a new solution
dominates the current pBest, is the pBest updated.

s An extended memory is used to store all the Pareto
optimal solutions currently found by the population.

» The selection of nBest: First a neigborhood pool of
current particles is selected from the extended memory
by a distance measure. All but one fitness value is
used to calculate the distance, and the m nearest
solutions from current particle (m 1s the neighbor size)
compose the neighborhood pool. The last fitness value
in MO problems is used to determine the nBest from
the neighbors.

Compared with previous methods, the m-DNPSO gets
better results in a shorter time for the tested benchmark
functions. It is demonstrated that dynamic neighborhood PSO
with extended memory is an efficient and effective method to
locate the Pareto front of MO problems. However, for some
more complex problems, m-DNPSO still need to improve its
performance. And the parameter settings under different
circomstances are still under investigation,
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