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Abstract. Erlang is a concurrent functional programming language de-
signed to ease the development of large-scale distributed soft real-time
control applications. It has so far been quite successful in this applica-
tion domain, despite the fact that its currently available implementa-
tions are emulators of virtual machines. In this paper, we improve on the
performance aspects of Erlang implementations by presenting HiPE, a
native-code compiler for Erlang. HiPE is a complete implementation of
Erlang, o�ers 
exible integration between emulated and native code, and
e�ciently supports features crucial for Erlang's application domain such
as concurrency. As our performance evaluations show, HiPE is currently
the fastest among all Erlang implementations.

1 Introduction

The concurrent functional programming language Erlang was designed by a
group at Ericsson to address the needs of large-scale distributed soft real-time
control applications [3]. Such applications routinely arise in products developed
by the telecommunications industry. Erlang caters for these needs with a run-
time system that provides many features often associated with an operating
system rather than a programming language; such as scheduling of light-weight
concurrent processes, automatic memory management, networking, protection
from deadlocks and programmer errors, and support for continuous operation
even when performing software upgrades.

After around a decade of existence, it is generally acknowledged that Erlang
is among the \success-stories" of declarative programming languages; see e.g.
Wadler's article [21]. Also, the experience reported in [2, 6] is that Erlang allows
telecommunication systems to be programmed with less e�ort and fewer errors
than by using conventional programming language technology. It is worthwhile
to note that such systems typically consist of several hundred thousand lines of
source code (the size is partly due to the complexity of the telecommunication
protocols), and heavily rely upon the concurrency capabilities of Erlang.

The industry, besides Ericsson, is showing a growing interest in Erlang, but
there is a very limited choice of compilers, partly due to Erlang's|until recently
exclusive|\in-house" development. Also, as an implementor of these compilers
publicly admits [2]: `performance has always been a major problem' and `we



are (even) considering adding imperative features to the language to solve these
(performance) problems'. Indeed, the performance of current implementations of
Erlang is worse than that of good implementations of other functional program-
ming languages; see also [8, 9]. In the competitive market of telecommunications,
however, the need for a high-performance implementation is sometimes pressing.

As one such example, consider AXD 301, a new generation ATM switching
system from Ericsson [6]. The major part of AXD 301's software is written in
Erlang; it consists of about 480,000 lines of Erlang code, with about 95,000 of
them constituting the time-critical modules of the system. Speeding up this time-
critical part by, say even 20%, would be more than welcome by the AXD 301
engineering team, let alone Ericsson. The reason: this 20% directly corresponds
to the ATM switch being capable of servicing around 20% more requests, which
translates to higher revenues for Ericsson as it puts AXD 301 way ahead of its
competitors' products!

Currently, complete implementations of Erlang are emulators of virtual ma-
chines. This gives them good portability, but emulation incurs a performance
penalty to Erlang programs which some users wish|and in some cases need
to|avoid. Ways to avoid the performance problems caused by emulation are:
1) use a su�ciently low-level and fast language such as C or 2) the recently
proposed C-- [16] as a portable assembly language, 3) use a retargetable code
generator such as ML-RISC [15] or 4) the gcc back-end [18], or 5) compile di-
rectly to native code. Each of these implementation choices has well-known pros
and cons but one can roughly expect a decrease in portability and an increase
in performance and implementation e�ort for a higher choice number; see also
the above references and the references therein. Perhaps another issue deserves
attention: byte-code emulators usually result in smaller object code size than
C-based or native code compilers. Although object code size is becoming less
and less of a concern nowadays, it is still a potential problem when the source
code of the application consists of several hundred thousand lines.

This paper describes our approach to the e�cient execution of Erlang. We
have developed a system, HiPE, which combines the performance characteristics
of a native code compiler with the bene�ts of an emulated implementation. More
speci�cally, HiPE currently uses the JAM emulator [2] as a basis and allows
selective compilation of whole modules or individual functions into native code,
which is then executed directly by the underlying hardware. Besides describing
HiPE, we discuss technical issues that this emulated/native code integration
entails and how we dealt with them. We pay special attention to supporting hot-

code loading (see next section) in HiPE, and apply various standard compiler
optimizations in our native code generation. The end result of our e�ort currently
appears to justify its name!

The rest of the paper is organized as follows: To make this paper self-
contained, we begin by reviewing the characteristics of Erlang (Section 2). Sec-
tions 3 and 4 form the main part of this paper and describe the basic charac-
teristics of HiPE, its architecture, and the integration of native and emulated
execution within the same run-time system. Some aspects of HiPE's instrumen-
tation and support for pro�ling are discussed in Section 5. Section 6 compares
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and analyses the performance of HiPE against all other existing Erlang compilers
on both \standard" small benchmarks and on large programs from real-world
applications of Erlang. We end this paper with some concluding remarks.

2 The Erlang Language: A brief introduction

Erlang1 is a dynamically typed, strict, concurrent functional programming lan-
guage. It is possible to create closures in Erlang, but typical Erlang programs
are mostly �rst-order. Erlang's basic data types are atoms, numbers (integers
with arbitrary precision and 
oats), process identi�ers, and references; compound
data types are lists and tuples. There is no destructive assignment of variables,
the �rst occurrence of a variable is its binding instance, and function selection
happens using pattern matching. Erlang's design inherits some ideas from con-
current constraint logic programming languages such as the use of 
at guards in
function clauses.

Processes in Erlang are extremely light-weight, their number in typical ap-
plications is quite big, and their memory requirements vary dynamically. Er-
lang's concurrency primitives|spawn, '!' (send), and receive|allow a pro-
cess to spawn new processes and communicate with other processes through
asynchronous message passing. Any data value can be sent as a message and
processes may be located on any machine. Each process has a mailbox, essen-
tially a message queue, where each message sent to the process will arrive. There
is no shared memory between processes and distribution is almost invisible in
Erlang. To support robust systems, a process can register to receive a message
if another one fails.

An Erlang module de�nes a number of functions. Only explicitly exported
functions may be called from other modules. Calls to functions in di�erent mod-
ules, remote calls, must give the name of the module of the called function.
During execution of functions, last call optimization is performed. Memory man-
agement in Erlang is automatic through garbage collection (as in all other func-
tional programming languages), but the real-time concerns of the language call
for bounded-time garbage collection techniques (see [20]).

To perform system upgrading while allowing continuous operation, an Erlang
system needs to cater for the ability to change the code of a module while the
system is running, so called hot-code loading. Processes that execute old code can
continue to run, but are expected to eventually switch to the new version of the
module by issuing a remote call (which will always invoke the most recent version
of that module). Erlang provides mechanisms for allowing a process to timeout
while waiting for messages and a catch/throw-style exception mechanism for
error handling.

The Erlang language was purposely designed to be as small as possible, but
comes with a relatively big set of libraries containing built-in functions (known
as BIFs). With the Open Telecom Platform (OTP) middleware, Erlang is fur-
ther extended with a library of standard solutions to common requirements of

1 Named after the Danish mathematician Agner Krarup Erlang (1878{1929).
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telecommunication applications (servers, state machines, process monitors, load
balancing), standard interfaces (CORBA), and standard communication proto-
cols such as HTTP and FTP.

3 JAM: The Basis of HiPE

HiPE is based on the bytecode emulated JAM implementation of Erlang, to
which it adds the ability to compile and execute Erlang as native machine code.
HiPE exists as a new component (currently 30,000 lines of Erlang code for the
compiler and 3,000 lines of C and assembly code in the runtime system) added
to an otherwise mostly unchanged JAM system; only the JAM emulator and
the memory management subsystem have been extended to be aware of HiPE.
Because of this tight integration, we describe relevant aspects of the basic JAM
system here; Section 4 continues with HiPE-speci�c implementation details.

Until recently, Erlang was only available within the Ericsson company and to
a few research groups outside Ericsson. The �rst version of HiPE, HiPE 0.28 [12],
was based on Erlang 4.3.1, and the current version, HiPE 0.90, is based on
Erlang 4.5.3. Being based on proprietary code, these versions of HiPE are not
publicly available. Erlang has recently been made available as Open Source. We
are currently porting HiPE 0.90 to Open Source Erlang 4.7.4.1, and expect to
have a public release of HiPE 1.0 before the end of 1999.

3.1 The JAM System

The standard Ericsson implementation of Erlang is based on the JAM virtual
machine. The JAM is a virtual stack machine whose primitive operations closely
correspond to the Erlang language.

The JAM compiler. The JAM compiler is a non-optimising compiler which
performs a straightforward translation to the JAM virtual stack machine. The
generated object �les contain machine-independent bytecodes and \relocation"
entries which describe all symbolic references that must be resolved by the loader.

The JAM loader. The JAM loader translates JAM bytecodes from the exter-
nal format to the internal format expected by the JAM emulator.

Erlang atoms are symbolic constants, like atoms in Prolog or symbols in Lisp.
The internal representation of an atom is its position in the atom table, which
is not known until runtime. Therefore, the �rst task of the loader is to replace
symbolic references to atoms by their current internal representation.

Remote (non-local) function calls are represented by triples (module name,
function name, function arity). First the names are translated to internal atoms.
Then special cases are identi�ed, such as calls to the erlang module which
become calls to C functions in the runtime system. Finally, both the JAM opcode
and its parameters at this call site are patched to re
ect the result.

After a module has been loaded, a global symbol table is updated with in-
formation about the module, its exported functions, and the code addresses at
which those functions start.
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The JAM emulator. The JAM emulator is a single C function which executes
JAM instructions represented as bytecodes. It is invoked on a runnable Erlang
process, and executes code for that process until it blocks. A process blocks
either when it attempts to read a message and its message queue is empty, or
when its \time slice" has expired. Time slices are represented by work budgets,
which are explicitly decremented and checked at speci�c points in the emulator.

Each Erlang process is described by a process control block (PCB), a stack,
a heap, and a set of pointer registers:

sp next word on the stack
fp start of current function's activation record
ap �rst actual parameter
pc current bytecode instruction
cc debug information about the current function

The stack discipline is simple but unoptimised. At a call, the parameters are
pushed in left-to-right order, followed by a 4-word continuation record containing
the caller's fp, ap, pc, and cc. Then fp is set to point to the start of this record,
sp to the �rst word after the record, and ap to the �rst parameter (derived from
fp and the callee's arity); see Fig. 1. At return, sp is reset to ap, cc, pc, ap, and
fp are restored from the frame, and the return value is pushed onto the stack.

� � �
ap ! parameter #1

� � �
parameter #n

fp ! caller's fp
caller's ap
caller's pc
caller's cc

sp ! � � �

Fig. 1. JAM stack on entry to a function

Tailcalls are complicated by the fact that the four-word continuation frame
is pushed after the parameters instead of before. Since the continuation frame
is adjacent to the parameter area, it will have to be relocated whenever there
is a tailcall and the caller and callee have di�erent number of parameters. At
a tailcall, the JAM emulator copies the frame into temporary variables, then
copies the outgoing parameters from the bottom of the stack to the parameter
area, and then (if necessary) moves the copy back to the stack2.

Exception handling is implemented by dynamic tracking [4]. On entry to a
protected code block, a 2-word catch frame is pushed onto the stack, containing
a pointer to the previous catch frame and the address of the �rst bytecode after
the protected block. The address of this frame is saved in the PCB. To raise an
exception, the stack is unwound one call-frame at a time, until the activation

2 Performance could be improved by shrinking the frame to a minimum: ap is redun-
dant and cc can be computed from pc when needed. If the continuation was pushed
before the parameters, it could remain in place during tailcalls [7, Section 4.6.1].
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record containing the current catch frame is found. The unwinding process also
restores the sp, fp, ap, and cc registers.

3.2 Processes and Memory Management

The JAM implementation uses a hybrid memory management system which
combines several techniques.

An Erlang node is an instance of the Erlang runtime system executing on a
given machine. On Unix, this is a single Unix process. Within a node, Erlang
processes are created dynamically and execute as coroutines.

Each Erlang process has a PCB, a stack, and a private heap for the data
structures it creates. When an Erlang process terminates, its memory resources
are immediately deallocated and made available for reuse. The idea behind this
is that each process is expected to have only a small amount of live data, so
garbage collecting a single process is expected to be a fast operation. (A standard
generational stop-and-copy collector is used.) Also, there is no delay from the
point when a process terminates to the point when its memory can be reused.
The disadvantage is that the garbage collector cannot handle references from one
process' heap to another's; therefore, message passing always implies copying.
Messages are expected to be small, however.

An Erlang process starts with small stack and heap areas, which are grown
when needed. Compared to a typical implementation of Posix threads in Unix,
which would allocate in the order of one megabyte of virtual memory for each
thread's stack, Erlang processes are extremely lightweight. An Erlang node is
expected to handle hundreds or thousands of Erlang processes with relative ease.

A global database, the Erlang Term Storage tables, is accessible from all
Erlang processes within a node. It is implemented essentially as a an additional
but specialised process, so storing and retrieving data implies copying, like when
sending messages.

Erlang binary objects are immutable sequences of binary data, and are often
relatively large. A binary is represented by a data area, and a small header which
contains a pointer into the data area. When a binary is split into sub-binaries
(a frequent operation), new headers are created but the data area is not copied.
Binaries are allocated in memory visible to all Erlang processes in a node; when
sent in a message, a binary is passed by reference. Although the standard garbage
collector is based on copying, binaries are mark-sweep collected.

3.3 The Complete Erlang System

The complete system consists of the runtime system and the Erlang libraries.
The runtime system contains the JAM emulator, the garbage collector, the pro-
cess scheduler, the standard procedures which are implemented as C functions,
the OS interface, and other bits and pieces. The Erlang libraries contain the Er-
lang compiler, support for input/output, networking, and building client-server
applications, and the Open Telecom Platform (OTP) libraries.

6



4 HiPE { System Overview

The HiPE compiler is called as an ordinary Erlang function, within a running
Erlang system. Given the name of an existing Erlang function, it translates that
function's JAM bytecodes to SPARC V9 machine code, and then updates the
symbol table so that future calls invoke the native code.

HiPE compiles a single Erlang function at a time. As mentioned before,
telecom applications tend to be very large, and code size is a real concern.
Code expansion during compilation is in the order of a factor 10{20, so it would
be inappropriate to compile all JAM functions to machine code. Instead, the
programmer is expected to identify (usually using pro�ling tools) those functions
and call paths that would bene�t most from compilation to native code.

We want native code to execute as fast as possible, even if that means com-
plicating the mode-switching interface between native and emulated code.

Historically, Erlang libraries were only present as JAM bytecode �les. There-
fore, HiPE is designed to take already-loaded JAM bytecode instead of Erlang
source code as input, and it only stores the generated machine in memory, not
in �les3. In this respect, HiPE resembles a JIT compiler. However, compilation
always occurs as a side-e�ect of an explicit call to the HiPE compiler.

Code compiled by HiPE uses the same runtime system and the same built-
in C functions as the JAM emulator. It can, and is often used to, recompile
standard Erlang libraries into more e�cient native code.

4.1 The HiPE Compiler

The compiler has four intermediate representations; an internal representation
of JAM bytecode, a high level intermediate code called ICode, a general reg-
ister transfer language called RTL, and a machine-speci�c assembly language,
currently SPARC; see Fig. 2. ICode, RTL, and SPARC are all represented as
control 
ow graphs of basic blocks.

The JAM bytecodes are translated to symbolic form by a straightforward
process. Internal atom numbers are converted to real atoms, and branches to
local functions are translated to call instructions with symbolic function names.

ICode is based on a register-oriented virtual machine for Erlang. Arguments
and temporaries are located in an in�nite number of registers, and all values
are proper Erlang terms. The call stack is implicit, and calls preserve registers.
Bookkeeping operations, such as heap over
ow checks, context switching, and
time-slice decrements, are implicit. The translation from JAM bytecode to ICode
uses a simulated stack to map JAM stack slots to ICode registers. A register
renaming post-pass ensures that every register has a single de�nition4.

3 This also means that HiPE may lose some performance since the JAM compiler is not
aggresively optimising. A future version of HiPE will use a new compiler front-end
currently under development at Uppsala University and Ericsson.

4 This is not a semantic requirement, but it helps later compilation passes.
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Fig. 2. Intermediate representations in HiPE.

The ICode is then optimised with copy and constant propagation, and con-
stant folding. This is done in one pass over all extended basic blocks. Dead code
removal is then performed to remove assignments to dead temporaries.

Unreachable code is removed by the translation to RTL, since only reachable
basic blocks are inserted in the RTL control 
ow graph. Operations on Erlang
values are expanded to make data tagging and untagging explicit.

The same optimisations that were performed on ICode are then applied to
the RTL code. Heap over
ow tests, call stack management, and the saving and
restoring of registers around calls are made explicit, and the standard optimisa-
tions are applied again. In order to limit the number of heap over
ow tests, they
are propagated backwards as far as possible, and adjacent tests are merged.

The RTL code then is translated to abstract SPARC code, and registers
are assigned using a simple graph-colouring register allocator. Finally, symbolic
references to atoms and functions are replaced by their values in the running
system, memory is allocated for the code, and the code is linked into the system.

4.2 The HiPE linker

As described before, Erlang requires the ability to upgrade code at runtime,
without a�ecting processes already executing in the old version of that code.

The JAM system maintains a global table of all loaded modules. Each module
descriptor contains a name, a list of exported functions, and the locations of
its current and previous code areas. The exported functions always refer to the
current code segment. At a remote function call, module:function(params: : :),
the JAM emulator �rst performs a lookup based on module and function name.
If the function is found, the emulator starts executing its bytecodes. Otherwise,
an error handler is invoked.

HiPE uses code patching to eliminate these dynamic lookups from native
code. In native code, each function call is implemented as a subroutine call to an
absolute address. When the caller's code is being linked, the linker initialises the
call to directly invoke the callee's code. If the callee has not yet been loaded, the
linker will instead direct the call to a stub which performs the appropriate error
handling. If the callee exists, but only as emulated bytecode, the linker directs
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the call to a stub which in turn will invoke the JAM emulator. The linker keeps
track of all call sites, and dynamically upgrades them as modules are loaded and
as functions are compiled to native code.

Even though it is possible to use code patching to reduce the overhead in-
curred on remote procedure calls by hot-code loading, hot-code loading still
incurs runtime costs and makes optimisations, such as inlining, harder.

Both the standard Erlang system and HiPE support load-on-demand of mod-
ules. When invoked, the error handler for unde�ned function calls will attempt to
load the JAM bytecodes for that module from the �le system. If this is success-
ful, the call continues as normal. As a side-e�ect of loading the JAM module, the
HiPE linker will patch native code call sites to instead invoke the JAM emulator.

4.3 Native code calling conventions

In the HiPE runtime system, an Erlang process can execute both emulated JAM
code and native SPARC code. To facilitate data sharing, HiPE uses the same
data representation as JAM does. However, using the same calling convention in
native code as in JAM is not a good idea, since JAM passes all parameters on the
stack and uses large call frames containing redundant information. Instead, na-
tive code passes the return address and the �rst �ve parameters in registers, and
uses only a single-word stack frame for preserving the previous return address.

HiPE uses two stacks for each process, one for emulated code (the estack)
and one for native code (the nstack). An early version of HiPE [12] used only one
stack, but that was complex and di�cult to implement correctly. Our current
dual-stack approach is complicated by the fact that each catch-frame contains
a link to the previous catch-frame, which may be on the other stack, and ei-
ther stack may have to be relocated if a process needs more stack space. The
dual-stack discipline also complicates the implementation of tail-recursive calls
between native and emulated code, as described below.

4.4 Switching from emulated to native mode

Each JAM function is pre�xed with a header, which records the location of that
function's native code, if it has been compiled. At call sites, the JAM emulator
checks this header to determine if a switch to native code should be done. At
return sites and during the search for an exception handler, a check is made if
the return address has a magic value; if so, a switch to native code is done.

The mode switch interface, a C function, switches from emulated to native
mode, calls the native code, and on return switches back to emulated mode. The
exact actions vary, depending both on the kind of mode switch (call, tailcall,
return, exception, suspend, wait) and its direction.

Each of the two stacks is to be viewed as a sequence of segments. When there
is a recursive call from one mode to the other, there will be a segment boundary
at the top of the caller's stack. The \current" segment is the portion of the stack
between the stack pointer and the most recent segment boundary.
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When calling a native code function from emulated code, the �rst �ve param-
eters are copied to the PCB, and then loaded into registers by a small assembly-
coded stub. Parameters beyond the �fth are pushed onto the nstack.

The interface uses magic frames. These frames are formatted as normal call
or catch frames, but their return addresses cause control to 
ow back to the
mode-switch interface.

call: Emulated code has pushed a call frame on the estack and now tries to
invoke a native code function.
1. push magic call frame on estack
2. push magic catch frame on nstack
3. copy parameters from estack to PCB and nstack
4. call native interface() to invoke the code

tailcall: Emulated code is performing a tailcall. The caller's call frame is on
the estack. If this is a magic frame, then native code called emulated code,
which now tailcalls native code.
1. if the top estack call frame is not magic, then perform the same actions

as for a call; otherwise:
2. copy parameters from estack to PCB and nstack
3. pop magic call and catch frames from estack
4. call enter native() to invoke the code

return: Native code called emulated code, which is now returning.
1. move (copy and pop) return value from estack to PCB
2. pop magic catch frame from estack
3. call ret to native() to invoke the code

exception: Native code called emulated code, pushing a magic catch frame. An
emulated-mode exception invoked this catch frame, and the exception is now
re-thrown on the nstack.
1. move exception value from estack to PCB
2. pop nstack to the position of the current exception handler
3. call ret to native() to invoke the code

resume: A native-mode process had suspended, and is now awakened.
1. set resume cause 
ag in PCB
2. call ret to native() to invoke the code

4.5 Switching from native to emulated mode

The switch back from native to emulated mode is triggered when the process
must suspend, when it invokes a native-to-emulated call stub inserted by the
linker, or when it invokes a magic return or exception handler address provided
by the mode-switch interface.

return: Emulated code called native code, which is now returning. The current
nstack segment is empty, except for a single magic catch frame. The estack
has a magic and a real call frame on top.
1. pop magic catch frame o� nstack
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2. pop magic and real call frames o� estack
3. move return value from PCB to estack
4. return to JAM emulator with status continue

call: Native code calls or tailcalls emulated code.

1. push magic catch frame on estack5

2. move parameters from PCB and nstack to estack
3. push magic call frame on estack
4. return to JAM emulator with status continue

exception: Emulated code called native code, which is now throwing an excep-
tion. The current nstack segment is empty. The estack has a magic and a
real call frame on top.

1. pop magic and real call frames o� estack
2. move exception value from PCB to estack
3. return to JAM emulator with status exception

suspend: The process' time-slice has run out.

1. mark PCB as suspended but runnable
2. return to JAM emulator with status suspended

wait: The native code suspends due to an empty message queue.

1. mark PCB as suspended waiting for message
2. return to JAM emulator with status suspended

4.6 Possible Improvements of Emulated code

To improve performance of emulated code, we could extend the HiPE linker to
also record all call sites in JAM bytecode, and to patch those when their targets
are compiled to native code. This could also be used to replace remote calls using
dynamic lookup with direct calls, and to automatically update call sites if the
target module's code is upgraded.

5 Instrumentation of HiPE

We have enhanced HiPE's run-time system with performance instrumentation
features that can be selectively included or excluded when the run-time system
is built. These instrumentation features come in two forms:

software counters: These counters keep track of how often various operations
of interest are performed. For example, counters keep track of the number
of times each Erlang function is called, either locally, remotely, or through
a meta-call (apply). They can also count calls to built-in functions, how
many times each JAM instruction is executed, and how many times control
is passed between emulated and native code.

5 A recursive call from emulated to native code, followed by a tailcall from native to
emulated code, will leave a magic catch frame on the nstack. This frame will be
deallocated when the emulated code returns or throws an exception.
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performance instrumentation counters (PICs): The PICs are based on
the Sun UltraSPARC's performance instrumentation facilities [19]. PICs are
made accessible to the user through a builtin function, and they are typi-
cally used to measure how much time is spent in a region of code, and to
give hardware-speci�c information, for example the amount of time lost due
to stalls and cache misses. The reason for a stall can also be determined:
data cache miss, instruction cache miss, external cache miss, or a branch
misprediction. Currently, HiPE uses PICs to measure time spent in garbage
collection, each built-in-function, native code, and each time-slice. The in-
strumentation counts both elapsed cycles and issued instructions, making it
possible to determine the CPI (cycles per instruction) ratio.

For more details on the instrumentation, the reader is referred to [13].

6 Performance Evaluation

We conducted our performance comparison on a 143 MHz single-processor Sun
UltraSPARC 1/140 with 128 MB of primary memory running Solaris 2.6. Besides
HiPE (version 0.90), three other Erlang systems were used in this comparison:
JAM, BEAM, and Etos. The JAM and BEAM systems used in our measurements
are from Ericsson's Erlang 4.7.3. The version of Etos used is the latest one, 2.36.
HiPE and JAM have been described before; we discuss BEAM and Etos:

BEAM [10] is an emulator for an abstract register-based machine, in
uenced by
the Warren Abstract Machine (WAM) [1] used in many Prolog implementations.
Compared to JAM, the translation to the abstract machine is more advanced. For
example, the treatment of pattern matching is better in the BEAM, even though
a full pattern matching compiler (like that in e.g. [17]) is not implemented. Also,
BEAM uses a direct-threaded emulator [5, 14] using gcc's labels as �rst-class
objects extension [18]: instructions in the abstract machine are addresses to the
part of the emulator that implement the instruction.

Etos [8] is a system based on the Gambit-C Scheme compiler. It translates
Erlang functions to Scheme functions which are then compiled to C. The trans-
lation from Erlang to Scheme is fairly direct. Thus, taking advantages of the
similarities of the two languages, many optimizations in Gambit-C are e�ective
when compiling Erlang code. Among these optimizations are inlining of func-
tion calls (currently only within a single module) and unboxing of 
oating-point
temporaries. Etos also performs some optimizations in its Erlang to Scheme
translation, for example, simpli�cation of pattern-matching.

Process suspension in Etos is done using call/cc implemented using a lazy
copying strategy; see [11]. When a process is suspended, the stack is \frozen" so
that no frame currently on the stack can be deallocated. Thus, the stack of a
suspended process will occupy a portion of the stack. When control returns to

6 Versions of Etos & HiPE used in [8] are signi�cantly older than those used here.
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a suspended process, its stack frames are copied to the top of the stack. When
the stack over
ows, the garbage collector moves all reachable frames from the
stack to the heap. In general, suspending and resuming a process will require its
stack to be copied at least once. In contrast, the JAM/BEAM/HiPE runtime
systems handle processes explicitly; saving or restoring the state of a process
involves storing or loading only a small number of registers. The Etos compiler
is work under progress, and it is not yet a full Erlang implementation. We have
therefore been able to run only relatively small benchmarks on Etos.

We start our performance comparison using the following set of \standard"
small sequential benchmarks:

�b A recursive Fibonacci function. Calculates fib(30) 50 times.
hu� Hu�man encoder. Compresses and uncompresses a short string 5000 times.
length A tail-recursive list length function �nding the length of a 2000 element

list 100,000 times.
nrev Naive reverse of a 100 element list 20,000 times.
qsort Ordinary quicksort. Sorts a short list 50,000 times.
tak Takeuchi function, uses recursion and integer arithmetic intensely. Calcu-

lates tak(18,12,6) 1000 times.
smith The Smith-Waterman DNA sequence matching algorithm. Matches one

sequence against 100 others; all of length 32. This is done 30 times.

and a medium-sized one (� 400 lines):

decode Part of a telecommunications protocol. Decodes an incoming binary

message 500,000 times.

Benchmark HiPE Etos JAM BEAM

�b 33.8 31.8 281.4 120.6
hu� 11.9 12.1 234.7 69.2
length 22.7 17.2 375.6 98.9
nrev 18.5 24.4 241.3 56.9
qsort 12.3 11.0 208.1 97.6
tak 13.5 12.8 140.1 100.2
smith 11.4 11.6 114.6 53.9

decode 22.8 52.4 67.8 49.0

Table 1. Execution times (in seconds) for small sequential benchmarks.

Table 1 contains the results of the comparison. In all benchmarks, HiPE and
Etos are the fastest systems: in small programs they are between 7 to 20 times
faster than JAM and 3 to 8 times faster than the BEAM implementation; see
also Fig. 3. Excluding length and nrev where HiPE and Etos show complemen-
tary behaviour, the performance di�erence between these two systems on small
programs is not signi�cant. In decode, where it is probably more di�cult for
Etos to optimize operations and pattern matching on binary objects, HiPE is
more than 2 times faster than Etos. HiPE is faster than JAM and BEAM, but
not to the same extent as for the other benchmarks.
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Fig. 3. Performance speedup compared to JAM for small benchmarks.

Next, we compare the Erlang implementations on concurrent programs. As
mentioned in the introduction, most Erlang programs rely heavily on the concur-
rency primitives of the language. Thus, these programs call for special attention
in good Erlang implementations. The benchmark programs we used are:

ring Creates a ring of 10 processes and sends 100,000 messages. The benchmark
is executed 100 times.

stable Solves the stable marriage problem for 10 men and 10 women 5,000 times.
life Executes 1,000 generations in Conway's game of life on a 10 by 10 board

where each square is implemented as a process.

Benchmark HiPE Etos JAM BEAM

ring 37.1 76.0 101.6 72.5
stable 12.8 27.9 37.8 19.5
life 5.6 20.1 13.4 8.7

Table 2. Execution times (in seconds) for small concurrent benchmarks.

Table 2 contains the results of the comparison. Once again, HiPE is the fastest
system: it is around 2.5 times faster than JAM, 55% faster than BEAM (95% on
ring), just over 2 times faster than Etos on ring and stable and more than 3.5
times on the life benchmark; see also Fig. 4(a). In fact, Etos 2.3 does not seem to
be signi�cantly faster than JAM and is slower than BEAM when processes enter
the picture. We suspect that Etos' implementation of concurrency via call/cc

is not very e�cient.
To us, it was very unclear whether performance experiences gathered from

the study of small or medium-sized benchmarks are applicable to real-life ap-
plications of Erlang. We thus also compared the performance of HiPE on quite
large Erlang programs. The programs used in this endeavour were:

JAM Compiler This \application" is incestuous, but large nevertheless. The
used portion of the compiler consists of 30 modules totalling � 18; 000 lines
of Erlang code. The benchmark is to compile 11 of these modules using the
JAM compiler compiled in each of the systems.
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Eddie An HTTP parser which handles 30 complex http-get requests. Excluding
the OTP libraries used, it consists of 6 modules for a total of 1,882 lines of
Erlang code. The benchmark is executed 1,000 times.

AXD 301/SCCT This is the time-critical software part of the AXD 301 switch
mentioned in the introduction. Excluding standard libraries, it consists of 73
modules of � 95; 000 lines of Erlang code. This actual benchmark of the ATM
switch sets up and tears down a number of connections 100 times.

Benchmark HiPE JAM BEAM

JAM Compiler 5.4 17.2 5.9
Eddie 18.8 93.6 40.0
AXD 301/SCCT 68.0 109.9 84.5

Table 3. Execution times (in seconds) for large benchmarks.

Table 3 shows the results of this comparison 7. HiPE is once again the fastest
system, but as benchmarks get larger, programs tend to spend more and more
of their execution time in built-ins from the Erlang standard library (e.g. the
AXD 301/SCCT benchmark extensively uses the built-ins to access the shared
database on top of Erlang term storage; see [13]), so its speedup compared to
BEAM drops. Still, HiPE is 25% faster than BEAM on the largest benchmark,
and considerably faster than JAM; see also Fig. 4(b).
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Fig. 4. Performance speedup compared to JAM for concurrent & large benchmarks.

7 Concluding Remarks and Future Plans

HiPE is a native code compiler for Erlang. It o�ers 
exible integration between
interpreted and native code, and supports features crucial for telecommunication
applications such as concurrency, error handling, and hot-code loading. As our
performance evaluation shows, it is the fastest of current Erlang implementa-
tions.

7 Etos is not included here; it currently cannot handle these large programs.
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We plan to release a version of HiPE, based on open-source Erlang 4.7.4.1,
before the end of 1999. Since future versions of open-source Erlang will use the
BEAM implementation, we plan to port HiPE to the BEAM run-time system.
At present HiPE only runs on one platform, the UltraSPARC. To improve the
usefulness of the HiPE system, we plan to develop a code generator for the x86
processor family. We are also developing a new front-end for HiPE that will not
rely on the JAM. Instead, the new front-end will be based on Core Erlang8, an
intermediate representation for Erlang developed recently. Since Core Erlang is a
fairly high-level functional language, we expect that it should be easier to include
optimizations, for example e�cient pattern-matching compilation, at that level.
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