
USENIX Association

Proceedings of the
4th Annual Linux Showcase & Conference,

Atlanta

Atlanta, Georgia, USA
October 10 –14, 2000

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2000 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Sequence Analysis on a 216-Processor Beowulf Cluster

Katerina Michalickova
Dept. of Biochemistry,

University of Toronto and
Samuel Lunenfeld Research

Institute, Toronto, ON, Canada
katerina@mshri.on.ca

Moyez Dharsee
Samuel Lunenfeld Research

Institute, Toronto, ON, Canada
dharsee@mshri.on.ca

Christopher W. V. Hogue
Dept. of Biochemistry,

University of Toronto and
Samuel Lunenfeld Research

Institute, Toronto, ON, Canada
hogue@mshri.on.ca

Abstract
In this work we describe the implementation of a 216-
processor Beowulf cluster with switched gigabit Ethernet
networking. This design includes the use of a 8-CPU high
performance midrange computer with 8 gigabit ports as a
cluster head, a design that limits I/O contention. We have
been developing applications software for bioinformatics
research in protein folding, as well as the MoBiDiCK
system for managing cluster applications that is
extensible to general purpose distributed computing. In
addition to the cluster architecture, we present a new
cluster application for bioinformatics, a variant of the
BLAST family of sequence comparison programs.
MOBLAST performs the BLAST algorithm in an
exhaustive manner, avoiding its initial heuristic approach
to finding hits. This effectively slows BLAST down to
approach the speed of other comprehensive search
methods such as a Smith-Waterman alignment.
MOBLAST requires a sizeable cluster to run. We
describe the development of MOBLAST and its use in
making an exhaustive M×N database of alignments where
M is the set of protein sequences with known 3-D
structures, and N is the set of all protein sequences. This
M×N database of protein alignments will facilitate further
research in protein folding, the ultimate aim of our work
with Beowulf cluster technology. Furthermore, we
describe a general algorithm for partitioning M×N
problems and implement this in the MoBiDiCK computing
model.

1. Introduction

1.1. Bioinformatics

We define bioinformatics as the science of testing
biological hypotheses using informatics approaches.
High-throughput biology has been producing a wealth of

new information in the form of DNA and protein
sequences, 3-dimensional molecular structures as well as
newer data relating to the interconnected networks of
molecular interactions that form the molecular machines
of life. We are interested in a fundamental problem, the
protein folding problem. We have been early adopters of
Linux and Beowulf clusters in adapting these
computational resources through the creation of new
software in order to tackle the compute-intensive
problems in bioinformatics.

1.1. M×N sequence comparisons –
assigning local structure to sequence

Most of the research in bioinformatics focuses on
functional assignment of proteins, the working molecules
forming the machinery inside a cell. So far the best
results of assigning function to protein sequences come
from studies of sequence similarity. A routine operation
for a biologist is to query a new protein sequence against
a sequence database to obtain a list of similar sequences,
then use these results to infer the function of the query
sequence. The core algorithms for comparing sequences
involve making alignments of sequences and finding
regions of sequence that are similar according to a
statistical model. Algorithms that find optimal alignments
can be time-consuming when run over a large database.
The BLAST[1] family of programs are widely used for
searching DNA and protein databases for sequence
similarities; they employ a heuristic for speeding up the
search[2]. Unlike a Smith-Waterman alignment[3]
BLAST does not perform an exhaustive optimization of
the query against every sequence in the database. Instead
it scans the database with a heuristic and only when the
condition of the BLAST heuristic is satisfied is the
optimal alignment computed, scored and reported.

We are interested in queries of protein sequences with
known 3-dimensional structures. With the addition of

3-D information, even a very short alignment can provide
significant information to a biologist[4], as it may be
inferred that the local 3-D structures of similar sequences
are also found in the query sequence. Short alignments
are often skipped by the heuristics in BLAST. We have
decided to build a cluster-based BLAST application that
bypasses the heuristic and performs the exhaustive
alignment between the query and each sequence in the
database using the core BLAST alignment routines. We
present MOBLAST, a cluster application integrated with
the MoBiDiCK[5] distributed computing system,
developed using the NCBI software development
toolkit[6]. MOBLAST performs exhaustive protein-
protein BLAST alignments in an M×N manner and
reports BLAST statistics and alignments.

To obtain an exhaustive comparison of each protein
with 3-D information against the database of known
protein sequences, we have implemented software to
compare these to a non-redundant protein sequence
database (NR) in an M×N fashion. In this case N is the
protein sequence database size, and M is the set of
sequences from known 3-D structures. We are also aware
that other biological comparisons are useful to perform in
an M×N fashion[7]. This is because it is often faster to
retrieve a precomputed comparison from a database than
to compute the result on the fly. Databases of
precomputed comparisons are valuable resources for
biologists, especially in clustering similar sequences or 3-
D structures[7][8]. We report a general method to
parameterize an M×N comparison using the MoBiDiCK
system that avoids processing symmetric duplicate
comparisons in the upper triangle of an overlapping range
in a database.

2. Cluster architecture

Our cluster consists of 108 independent 2U rack-
mount dual-PIII 450 MHz CPU computers, which
contribute a total of 216 CPUs to the system as a Beowulf
cluster. These nodes are interconnected with fiber optic
cable using Gigabit Ethernet with two 64-port Gigabit
Ethernet switches. In addition, the cluster has a “head”
computer, a high performance HP N-Class server with 8
64-bit PA-RISC CPUs. The “head” initiates compute jobs
and collects the output from the nodes, and it stores
results on a high-performance Fiber-Channel RAID
system. The head has 8 Gigabit Ethernet ports connecting
through 4 fibers to each of the two switches.

The headed cluster was chosen as an architecture
because of some severe I/O contention we noticed on our
smaller 32-processor cluster as jobs completed on nodes
simultaneously with our protein folding software
applications, which are described elsewhere[8]. This new
architecture enables a large number of simultaneous data
exchanges with many nodes in the cluster. This is possible

because the head computer has approximately 14 times
the bandwidth of a single node, owing to the 8 64-bit PCI
Gigabit cards in the head, versus 1 32-bit PCI Gigabit
card in each node.

Although the architecture we have selected is certainly
not the least expensive route, we selected components and
vendors by focusing on the ability to upgrade the cluster
in a cost-effective manner. We estimate that doubling the
current system’s performance will cost ¼ of the initial
expenditure. We have identified the following options to
upgrade the current architecture.

Upgrade Paths – Nodes. We selected rackmount
nodes that employ standard components, and rejected
those we considered overly customized. The cases we
have selected together with the power supplies and the
hard disks can all be conserved on upgrade. Each of the
2U rackmount computers can be upgraded with industry
standard ATX or NTX motherboards, RAM and new
CPUs. Future upgrades could be selected from Intel,
Alpha or even PowerPC architectures, whichever is most
cost effective.

Upgrade Paths – Head. The HP N-class was selected
based on knowledge that it is one of the latest designs on
the market. The head computer can be field-upgraded to
faster processors, more RAM and more high speed disk.
It is CPU-upgradable to the Intel/HP 64-bit EPIC
architecture chips, commonly known as “Merced”,
(released with the name “Itanium”). Indications are that
this will be capable of running 64-bit Linux, however
upgrades to faster versions of the PA-RISC architecture
CPU and HP-UX are also planned by HP. The “head” is
also capable of being upgraded to 64 Gb of RAM.

Upgrade Paths – Networking. The existing network
comprising 64-bit PCI network cards, fiber optic cabling,
and switches can be conserved. The 64-bit PCI network
cards are currently only being used with a 32-bit PCI bus;
their speed is not fully realized in the current nodes. We
recently learned that Foundry Networks will begin
shipping a chassis that is twice as large and supports the
same “blades” in our current switch. We can upgrade by
consolidating our existing Gigabit “blades” into a single
128-port wire-speed crossbar switch as the cluster
backplane. This can allow us to add 10 more nodes from
the ports freed up in consolidating the two switches, or
perhaps contemplate doubling the size of the cluster.

Figure 1. YAC Networking and Head Architecture. In addition to 54 fiber optic cables connecting nodes, each switch has 2 up-links in a ring
topology with additional switches on our LAN, accounting for all 128 ports. Photographs of the cluster are at http://bioinfo.mshri.on.ca/yac/.

Table 1. Cluster Specifications

Overall:

RAM: 64 Gb
HD: 1.6 Tb Disk Storage
CPUs: 224
NIC: Gigabit Ethernet
OS: Linux/HP-Unix
PRICE: $1,300,000 CDN ($884,000 US)
Cluster Head

Manufacturer: Hewlett Packard
Model: 9000 N-class Server
RAM: 8Gb
HD: 300 Gb AutoRAID
CPU: 8 440 MHz PA-RISC 8500 64bit
NIC: 8 Gigabit Ethernet, 64 bit PCI cards
OS: HP-UX 11.0

108 Cluster Nodes

Manufacturer: VA Linux (94 nodes + 14 from original cluster)
Model: FullOn 2x2
RAM: 512K
HD: 14Gb IBM
CPU: 2 450 MHz Intel Pentium III
NIC: 1 Intel Pro/1000 Gigabit Ethernet , 1 integrated Intel 100/BT
OS: Linux (Custom VALinux SMP kernel)

2 Network Switches

Manufacturer: Foundry Networks
Model: BigIron 8000
NIC: 64 Gigabit Ethernet Ports

Air Conditioner

Manufacturer: Carrier
Model: 40RM-014-B600HC
Capacity: 12.5 Ton with Outdoor Roof-Mounted Chiller

6 Racks

Manufacturer: DL Custom
Model: Controller Relay Rack

 3. Administration

While the cluster is fully capable of running MPI or
PVM based parallel software, we have focused on
developing cluster middleware that allows us to perform
computations with a minimum of administrative effort.
This is important to us for three reasons. First, we are
limited in that we do not have operating budgets required

to administer a complex system. Second, we need to
make our cluster based software accessible to Biologists
who may be accustomed to a Web-based interface for
running software. Last, we wish to be able to branch out
from cluster computing to wider-area distributed
computing, and we have sought to develop a mechanism
by which we could make use of other computers and
clusters over the Internet with MoBiDiCK distributed
computing system.

Using MoBiDiCK, a computational task can be
partitioned into subtasks and distributed over a set of Web
server nodes. On each node a CGI program (called a
"TaskApp") is launched with a unique set of parameter
values that define a single partition of the overall task.
Hence this system implements the single-program,
multiple-data (SPMD) parallel processing model.
Computations are managed on a kernel server running a
set of kernel modules, namely Dispatcher, Status,
Statekeeper, Collector, and DataManager. A Web browser
interface is used to interact with these modules to
administer nodes and computations. MoBiDiCK is back-
ended by a database that holds state information about
nodes and tasks. The MoBiDiCK kernel runs on the HP
N-class server, the cluster head.

A computation is started with the Dispatcher module to
partition and dispatch the task. The Collector handles
output collection and local node cleanup, while the Status
and Statekeeper modules perform task monitoring and
fault-tolerance functions. Since there is no need to directly
log into a node to run a task, user accounts are not
required on the cluster nodes. As with any CGI program,
a MoBiDiCK TaskApp is launched by the HTTP server
under pre-configured restricted user and group IDs
(usually the “nobody” user and group on Linux). We
configured the cluster nodes to run the Apache Web
Server[9] using a modified “TimeOut” directive to allow
TaskApps to execute beyond the 5 minute default value.

4. Cluster applications

The cluster computer is capable of running a variety of
software optimized for Beowulf clusters using industry
standard systems (PVM, MPI) for controlling parallel
applications. This includes software important in our
field of research for studying molecular dynamics
(CHARMM) and for the production of high-resolution 3-
D ray-traced graphics (PVM-POVRAY). We have
already described our main application, FOLDTRAJ,
which is used for sampling the 3-dimensional
conformational space available to a protein structure.
Here we present a new application for exhaustive
sequence comparisons.

4.1. MOBLAST – parallel M×N BLAST
with exhaustive alignments

We report a new cluster application aimed at providing
exhaustive protein sequence alignments in an M×N
comparison. We approximate using a figure of 500,000
non-redundant sequences, rounded up from the current
database size. About 10,000 of these sequences have
known 3-D structures. We are interested in obtaining a
database of the pre-computed comparison of all sequences

against each other, to serve as a resource for a variety of
other computations. This is not difficult to compute on a
cluster of this size with the currently distributed BLAST
application for protein sequences, blastpgp, which is
supplied in the NCBI toolkit. However we are interested
in a more detailed computation for sequences with known
3-D structure, an M×N comparison, and we have written a
new application for this purpose, called MOBLAST.

We have undertaken to estimate the time and storage
requirements for this new computation as we have been
building our cluster. This has guided us to find where
there are limiting amounts of time and storage as
indicated in Table 2. The most ambitious computation of
NxN with an exhaustive BLAST method would require
almost a year of time and 30 Tb of space to record the
output!

The BLAST programs are a part of the National Center
for Biotechnology Information (NCBI) programming
toolkit. In MOBLAST we use a core routine which
performs a pairwise alignment of two sequences, with a
function call known as BlastTwoSeqs(). In order to
speed up the algorithm, we eliminated some overhead I/O
by reading the scoring matrix file into memory at the start
of execution instead of it being read at every function call.
Additionally, we implemented POSIX threading to run
the executable on two CPUs simultaneously which
optimized memory use on each node by only loading one
copy of the database range being searched.

To estimate how much time one cluster node takes per
comparison we averaged executions on different database
ranges. Each run compared a subset the database range in
NxN fashion (only in lower triangle including the
diagonal) using threaded MOBLAST on our dual CPU
cluster nodes simultaneously. Timing for MOBLAST
was estimated from 26 test runs on a database sample size
of 500 sequences (in NxN comparison in lower triangle
including diagonal). Sequences were sampled from the
database, which at the time of the run contained 408,950
sequences, and the database is present on each node’s
hard disk at time of execution. The BLAST parameters
were left at defaults, which are the same as the blastpgp
parameters. The “expect” (E) parameter value was 10.0.
The average time to compute one MOBLAST comparison
on a single cluster node (threaded on two CPUs) was
determined to be 0.027 seconds. Overhead does not add
significantly to the computation, as it is “embarassingly
parallel” in nature. Only 63% of MOBLAST
comparisons return a “seqalign” object, of average length
342 bytes in an optimized format. The rest of the
comparisons fall under the cut-off value and are not
stored.

We also tested the blastpgp program directly from the
NCBI toolkit in 30 runs. The parameters were BLAST
defaults, which include the E value of 10.0. In each run,
one sequence (selected by stepping through the entire

database over 15,000 sequences at the time) was
compared to the NR database (485,275 sequences). The
average query length in this trial was 380 characters (the
overall average for the whole database is 313 characters).
The average time to complete one query was 48 seconds
and average number of hits in one query was 1814. It is
important to note that the output can be limited by altering
the BLAST parameters to cut off less significant hits.

Table 2. Resource Estimates for M×N BLAST Comparisons

Problem
No. of

Comparisons
Time on
Cluster

Output
Storage

1XN
(MOBLAST)

500,000 2 min.
(estimated)

108 Mb

1xN
(blastpgp -
heuristic)

500,000
48 sec.

just 1 CPU 171 Kb

M×N
(MOBLAST;
structures vs.
sequences)

500,000
x

10,000
(lower

triangle)

14 days
(estimated) 1 Tb

NxN
(blastpgp -
heuristic)

500,0002 3 days
(estimated)

85 Gb

NxN
(MOBLAST)

~500,0002/2
(lower

triangle)
355 days

(estimated)
27 Tb

4.2. A generalization for M×N comparisons with
MoBiDiCK

MOBLAST is designed to operate with the Modular
Big Distributed Computing Kernel (MoBiDiCK).
MOBLAST was integrated with MoBiDiCK with the task
applications programming interface (Task API). We
recognize that other applications in bioinformatics employ
M×N comparisons, and therefore sought a generalized
framework to partition tasks in that category under
MoBiDiCK.

Given a set of query sequences and a set of target
sequences, MOBLAST performs a BLAST comparison of
each query sequence with each target sequence. Since a
sequence is actually a database record, we can express the
query and target sets as database ranges Q* and T* such
that Q*=[qL, qU], T*=[tL, tU]; qL and tL denote lower record
boundaries, while qU and tU denote upper record
boundaries of Q* and T*, respectively.

A database can be viewed as a finite ordered set of
discrete points along an axis, each point representing a
database record. In Figure 2 we illustrate a database using
two axes to represent separately the query and target
ranges. Note that both axes correspond to the same
database. The shaded region consists of all possible pairs
of records between ranges Q* and T*, each pair
representing a single exhaustive BLAST comparison.
BLAST is a commutative operation, so that given two
records a and b, BLAST(a,b) is equivalent to
BLAST(b,a). If Q* and T* share an overlap range, V*,
then each pair in the upper triangle region of V* has an
equivalent pair in the lower triangle; we can thus discard
all pairs appearing strictly above the diagonal that divides
V*. Figure 3(a-c) shows that if Q* and T* overlap, the
overlapping range V* can occur in different ways. In each
case the overlap range V* can always be divided into
equivalent lower and upper triangles along a diagonal.

1

Q * = [q ,q]L U

T*
 =

 [t
L

U,t
]

q L

tL

tU

q Ua b

b

a

N

N

(b ,a)

(a ,b)

V *

Figure 2. Query and target sets are represented as database ranges.
The horizontal axis holds the query range (Q*), while the vertical axis
holds the target range (T*). An overlap region (V*) occurs if some
records are in both Q* and T*. Record pairs above the diagonal V* are
redundant if the operation to be performed is commutative, as is the
case for BLAST.

1 Q *
T*

N

N

V *

1 Q *
T*

N

N

1
Q *

T*

N

N

V *

1
Q *

T*

N

N

V *

(a)

(c)

(b)

(d)
Figure 3. Query (Q*) and target (T*) ranges can overlap partially (a,
b), fully (c), or not at all (d). Only record pairs in the lower triangle of the
overlap range (V*) are to be compared with BLAST.

We now describe a scheme for partitioning a
MOBLAST computation into subtasks that can be
distributed using MoBiDiCK. This scheme can serve as
an asbstraction that is generalizable to other M×N
computations in which a binary operator (such as
BLAST) must be applied to record pairs from two ranges
of a database. Given a global query range Q* of size M
and a global target range T* of size N, we divide both Q*
and T* by a partitioning factor p, resulting in local query
ranges Q1, Q2, …,Qp, and local target ranges T1, T2, …,Tp.
as in the example in Figure 4. For simplicity we assume
here that both M and N are divisible by p. Each cell in the
resulting grid represents a distinct MOBLAST subtask
that can be performed independently of the others.
Partitioning is automatically done by the MoBiDiCK
Dispatcher, given values for Q*, T*, and p. A total of p2

subtasks are generated, each subtask being assigned to
one node. If the number of subtasks exceeds the number
of available nodes, the remaining subtasks that cannot be
initially assigned are placed in a queue and are dispatched
as nodes become available.

4.3. The M×N algorithm

Each grid cell in Figure 4 represents a subtask of a
MOBLAST computation or other pairwise comparison.
According to the shape of the shaded region of a cell, we
characterize the corresponding subtask as full (entire cell
is shaded), partial (part of the cell is shaded), or emtpy

(cell is unshaded). All subtasks strictly outside V* are
full; subtasks appearing in V* that are strictly below the
diagonal are also full. Subtasks completely in V* that are
strictly above the diagonal are empty. Finally, all subtasks
that intersect V* are partial. Note that if there is no global
overlap, all subtasks are full.

1

Q 1

T 1

T 2

T 3

T 4

Q 2 Q 3 Q 4

tL

tU

N

N

q L q U

V *

S 1 S 5 S 9 S 13

S 14

S 15

S 16S 12S 8S 4

S 3

S 2 S 6 S 10

S 11S 7

Figure 4. Example of partitioned query and target ranges divided by a
partition factor p of 4 to produce a grid of 16 subtasks. Full subtasks are
completely shaded (S3, S4, S7, S8, S12); partial subtasks (S1, S2, S5, S6,
S9, S11, S13, S15, S16) intersect the diagonal and are only partly shaded;
emtpy subtasks are unshaded because they appear in the upper
triangle of the global overlap region, V*.

We describe the pseudocode for the MOBLAST
algorithm given in Table 3. Given global ranges Q* and
T* and local ranges Q and T, MOBLAST begins by
determining whether the subtask is full, partial, or empty.
If neither Q nor T intersect the global overlap range V*,
the subtask is full (lines 4, 13). If one of Q and T is in V*
(line 4), the subtask is partial only if there is a local
overlap between Q and T, that is, if the local overlap
range V is non-empty (line 5). If there is no local overlap,
the subtask is full if it is in the lower triangle of V*,
which occurs only when the lower boundary, Tl, of the
target range is greater then the upper boundary, Qu, of the
query range (line 8). If this is not the case, the subtask is
in the upper triangle of V* and is thus emtpy, resulting in
no comparisons (line 11). BLAST_FULL simply
performs a BLAST comparison for every pair between the
query and target ranges. BLAST_PARTIAL discards
pairs that occur in the upper triangle region of the global
overlap range V*.

Table 3. MOBLAST Algorithm

MOBLAST(Q*,T*,Q,T)

1 V* ← Q* ∩ T* Ö global overlap range

2 V ← Q ∩ T Ö local overlap range

3 if V* ≠ {} Ö if there is global overlap

4 if (Q ∩ V*) OR (T ∩ V*) Ö we’re in V*

5 if V ≠ {} Ö there is local overlap

6 do BLAST_PARTIAL(Q,T,V*)

7 else Ö no local overlap

8 if Tl > Qu Ö in lower triangle

9 do BLAST_FULL(Q,T)

10 else Ö in upper triangle

11 return

12 else Ö we’re not in V*

13 do BLAST_FULL(Q,T)

14 else Ö no global overlap

15 do BLAST_FULL(Q,T)

BLAST_FULL(Q,T) Ö compare all pairs

for i ← Ql … Qu

for j ← Tl … Tu

BLAST(i,j)

BLAST_PARTIAL(Q,T,V*) Ö only compare pairs outside upper triangle

for i ← Ql … Qu

for j ← Tl … Tu

if (i ∈ V*) AND (j ∈ V*)
if (j ≥ i)

BLAST(i,j)

else

BLAST(i,j)

5. Conclusions and future directions

The M×N comparison of proteins with known
structures to other sequences creates a database that will
allow us to accumulate plausible local structures that may
be rapidly assigned to any given sequence, combined with
evolutionary information from similar sequences. The
accumulation of information about local structure can
effectively seed a conformational search procedure and
we anticipate that this combined information will expedite
a protein folding computation. This would proceed as
follows:
• given a query protein sequence p
• S similar sequences are found using blastpgp
• All 3-D fragments F matching any subsequence in S

are retrieved from the M×N database
• A 3-D trajectory distribution T is derived

from the assembly of F mapped through alignments
of S onto the sequence of p

• T and p form the input to FOLDTRAJ
• Trajectory directed ensemble sampling attempts to

predict the 3-D structure

We will describe in more detail this work at our next
opportunity. In this work we devised a partitioning
scheme for the MOBLAST computation which divides
query and target database ranges into smaller subranges.
Each pair of query and target subranges can thus be
distributed as an independent subtask to a cluster node
using the MoBiDiCK distributed computing system. This
scheme, however, is not limited to MOBLAST or to
MoBiDiCK, and can be generalized to other operations to
be performed between pairs of records in a database.

6. References

[1] Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ.
Basic local alignment search tool. J. Mol. Biol. (1990)
215:403-410.

[2] Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z,
Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a
new generation of protein database search programs.
Nucleic. Acids. Res. (1997) 25:3389-3402.

[3] Smith, TF and Waterman, MS. Identification of common
molecular subsequences. J. Mol. Biol. (1981) 147:195-197.

[4] Simons KT, Kooperberg C, Huang E, Baker D. Assembly
of protein tertiary structures from fragments with similar
local sequences using simulated annealing and Bayesian
scoring functions. J Mol Biol (1997) 268:209-225.

[5] Dharsee, M. Hogue, C.W.V. MoBiDiCK: A Tool for
Distributed Computing on the Internet. In Proceedings, 9th

Heterogeneous Computing Workshop, May 2000.

[6] Ostell, J., et al. The NCBI Software Development Toolkit.
(6.0). ftp://ftp.ncbi.nlm.nih.gov/toolbox/.

[7] Gibrat, J-F., Madej, T., and Bryant, S.H. Surprising
similarities in structure comparison. (1996) Curr. Opin,
Struct. Biol. 6, 377-385.

[8] Feldman, H.J., Hogue, C.W.V. A Fast Method to Sample
Real Protein Coformational Space. Proteins: Structure
Function and Genetics, 2000. 39:112-131.

[9] The Apache Software Foundation. Apache HTTP Server
Project. http://www.apache.org/httpd.html.

